Cylindrical coordinates	Spherical coordinates

When 2-dim'l regions D have radial flavors, we use polar coordinates. When 3-dim'l regions E have radial flavors, there are two choices:

Cylindrical coordinates Spherical coordinates A point can have coords (r, θ, z) : (r, θ) are polar coords of xy-plane (r is the distance from the z -axis)and z is the "distance" to xy-plane

When 2-dim'l regions D have radial flavors, we use polar coordinates. When 3-dim'l regions E have radial flavors, there are two choices:

Cylindrical coordinates

A point can have coords (r, θ, z) :

 (r, θ) are polar coords of *xy*-plane (*r* is the distance from the *z*-axis) and *z* is the "distance" to *xy*-plane

Useful when problems involve symmetry about an axis. Cylinder, Paraboloids, Cones w/flat bases **Spherical coordinates**

Cylindrical coordinates	Spherical coordinates
A point can have coords (r, θ, z) :	A point can have coords $(ho, heta,\phi).$
(r, θ) are polar coords of xy-plane	ho is the distance from the origin
(<i>r</i> is the distance from the <i>z</i> -axis)	θ is same as in polar
and z is the "distance" to xy-plane	ϕ is \angle between $+z$ axis and \overline{OP} .
Useful when problems involve	
symmetry about an axis. Cylinder,	
Paraboloids, Cones w/flat bases	

Cylindrical coordinates	Spherical coordinates
A point can have coords (r, θ, z) :	A point can have coords $(ho, heta,\phi).$
(r, θ) are polar coords of xy-plane	ho is the distance from the origin
(r is the distance from the z -axis)	θ is same as in polar
and z is the "distance" to xy-plane	ϕ is \angle between $+z$ axis and \overline{OP} .
Useful when problems involve	Useful when problems involve
symmetry about an axis. Cylinder,	symmetry about a point
Paraboloids, Cones w/flat bases	Spheres, Cones with curved bases.

Cylindrical coordinates

Conversion:

$$x = r \cos \theta \quad y = r \sin \theta \quad z = z$$

$$r^{2} = x^{2} + y^{2} \quad \tan \theta = \frac{y}{x} \quad z = z$$

Cylindrical coordinates

Conversion:

$$x = r \cos \theta \quad y = r \sin \theta \quad z = z$$

$$r^{2} = x^{2} + y^{2} \quad \tan \theta = \frac{y}{x} \quad z = z$$

 $dV = r dr d\theta dz$

Spherical coordinates **Cylindrical coordinates Conversion:** $x = \rho \sin \phi \cos \theta$ **Conversion:** $dV = r dr d\theta dz$

Cylindrical coordinatesSpherical coordinatesConversion:
$$x = r \cos \theta$$
 $y = r \sin \theta$ $z = z$ $r^2 = x^2 + y^2$ $\tan \theta = \frac{y}{x}$ $z = z$ $dV = r dr d\theta dz$ $dV = \rho^2 \sin \phi d\rho d\theta d\phi$

Practice

Cylindrical coordinates

Practice changing coordinates: $(r, \theta, z) = (2, \frac{2\pi}{3}, 1); (x, y, z) = (3, -3, 7)$

Identify cyl. coord. equations:

2.
$$r = 2; z = r^2; r^2 - 2z^2 = 4$$

3. Sketch $r^2 \leq z \leq 2 - r^2$

Convert to cylindrical coordinates

4.
$$x^2 + y^2 + z^2 = 2; x^2 + y^2 = 2y$$

5. Give solid between
$$x^2 + y^2 = 1$$

and $x^2 + y^2 + z^2 = 4$.

6.
$$\begin{cases} -2 \le x \le 2\\ -\sqrt{4-x^2} \le y \le \sqrt{4-x^2}\\ \sqrt{x^2+y^2} \le z \le 2 \end{cases}$$

Spherical coordinates

Practice changing coordinates: $(\rho, \theta, \phi) = (2, \frac{\pi}{4}, \frac{\pi}{3}); (x, y, z) = (-1, 1, \sqrt{6})$ Identify sph. coord. equations: **2.** $\phi = \frac{\pi}{3}$; $\rho \sin \phi = 2$; $\rho = 2 \cos \phi$ **3.** Sketch $(2 \le \rho \le 3 \& \frac{\pi}{2} \le \phi \le \pi)$ Sketch $(0 \le \phi \le \frac{\pi}{3} \& \rho \le 2)$ Convert to spherical coordinates 4. $z = x^2 + y^2$; $z = x^2 - y^2$ 5. Give solid inside $x^2 + y^2 + z^2 = 4$, above xy-plane, below $z = \sqrt{x^2 + y^2}$. 6. $\begin{cases} 0 \le x \le 1 \\ 0 \le y \le \sqrt{1 - x^2} \\ \sqrt{x^2 + y^2} \le z \le \sqrt{2 - x^2 - y^2} \end{cases}$

Course Evaluation

Please comment on:

- 1. Prof. Chris's effectiveness as a teacher.
- 2. Prof. Chris's contribution to your learning.
- 3. The course material: What you enjoyed and/or found challenging.
- 4. Is there anything you would change about the course?
- 5. The lecture portion of the class included electronic slides. In what ways did this enhance or detract from your learning?
- 6. The assigned Webwork and homework assignments.
- 7. Is there anything else Prof. Chris should know?

Place completed evaluations in the provided folder.

I will be in my office, Kiely Tower, Room 606.