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The next few days

Goals: Understand function fitting, introduce Mathematica

Frame of reference:

! Formulation. Suppose the problem has been properly formulated.
! Problem statement is precise and clear.
! Dependent variable(s) and independent variable determined.

! Now we need a mathematical model; one type is a function.
! We collect data∗, plot it, and notice a pattern. y ≈ Cxk ???

! Simplifying assumption: The independent variable is a (simple)
function of the dependent variables.

! Math. Manipulation. Determine the best function of this type.
! Now: Visually. Later: Using a computer

! Evaluation. Does this function fit the data well?

" For a real world question, there is more evaluation to do.
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Functions you should recognize on sight
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What are these functions?
What is the most general equation of each type?
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Springs and Elongations

Example: Modeling Spring Elongation

Take your favorite spring. Attach different masses.
How much does it stretch from rest? [Its elongation.]

When we plot the data, we get the following scatterplot.
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Elongation of a Spring

What do you notice?

mass elong
x y

50 1.000
100 1.875
150 2.750
200 3.250
250 4.375
300 4.875
350 5.675
400 6.500
450 7.250
500 8.000
550 8.750
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Proportionality

When data seems to lie on a line through the origin, we expect the two
variables to be proportional; in this case, y = kx for some constant k .

We need to find this constant of proportionality k .

So: Estimate the slope of the line. How?

1. Guesstimating
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Elongation of a Spring

2. Mathematically: Linear Regression / Least Squares
(For another day)
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Fitting Gravity Data

Example. Modeling the dropping of a golf ball

Source:
practicalphysics.org

Let’s use an experiment to test the
gravity model from last time.

Use a camera to record the position
every tenth of a second.

Data would be similar to the table→
It’s plotted in the scatterplot below.
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Position !y"
Position of a dropped golf ball

t y

0.0 0.00
0.1 0.25
0.2 0.75
0.3 1.50
0.4 2.50
0.5 4.00
0.6 5.75
0.7 7.75
0.8 10.25
0.9 13.00
1.0 16.00

[Ignore data on p. 25.]
[It’s BAD data.]
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Fitting Gravity Data

These data seem to fit a (type of function) . How can we be sure?

1. Plot distance as a function of t2.
Next, estimate the constant of proportionality.

t t2 y

0.0 0.00
0.1 0.25
0.2 0.75
0.3 1.50
0.4 2.50
0.5 4.00
0.6 5.75
0.7 7.75
0.8 10.25
0.9 13.00
1.0 16.00
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This implies
y ≈ t2.
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Fitting Gravity Data

Key Concept: When fitting data to a function y = Ctk ,
An alternate method is:

2. ! Plot the log of distance as a function of log of time. !

! WHY? Suppose y = Ctk . Taking a logarithm of both sides,
ln y = ln(Ctk) =

Conclusion: To approximate C and k ,

! First, calculate ln y and ln t
for each datapoint.

! Fit the transformed data to a line.
! The slope is an approximation for k .
! The y -intercept approximates lnC .

!2.0 !1.5 !1.0 !0.5
ln!t"
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ln!y"
ln!y" as a function of ln!t"

ln y ≈ 2 ln t + 2.8
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Fitting Gravity Data
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y as a function of tWe have determined that our gravity model

y(t) = 16t2

appears to model the dropping of a golf ball.

Example. Raindrops—Our model gives their position as y(t) = 16t2.

A raindrop falling from 1024 feet would land after t = 8 seconds.

However, an experiment shows that the fastest drop takes 40 seconds,
and that drops fall at different rates depending on their size.

Even if we have a good model for one situation doesn’t mean it will
apply everywhere. We always need to question our assumptions.

—Extensive gravity discussion in Section 1.3.—
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Modeling Population Growth

Example. Modeling the size of a population.

We would like to build a simple model to predict the size of a
population in 10 years.

! A very macro-level question.

Definitions: Let t be time in years; t = 0 now.
P(t) = size of population at time t.
B(t) = number of births between times t and t + 1.
D(t) = number of deaths between times t and t + 1.

Therefore, P(t + 1) = .

Definitions
imply

P(4) =
B(12) =
B(5)−D(5)
=

Assumption: The birth rate and death rate stay constant.

That is, the birth rate b = B(t)
P(t) and death rate d = D(t)

P(t) are constants.

Assumption: No migration.
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Population Growth

Therefore, P(t + 1) = P(t)

[

P(t)
P(t) +

B(t)
P(t) −

D(t)
P(t)

]

.

Under our assumptions, P(t + 1) = P(t)[1 + b − d ].

This implies: P(1) = ,
P(2) = , . . .

In general, P(n) = .

Definition. The growth rate of a population is r = (1 + b − d).
This constant is also called the Malthusian parameter.

A model for the size of a population is
P(t) = P(0)r t ,

where P(0) and r are constants.
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Applying the Malthusian Model

Approximate US Population at: http://www.census.gov/main/www/popclock.html

Example 1. Suppose that the current US population is 317,420,000.
Assume that the birth rate is 0.02 and the death rate is 0.01.
What will the population be in 10 years?

Answer. Use P(t) = P(0)r t :

Refinement. Approx. US Growth Rate at http://www63.wolframalpha.com/input/?i=US+birth+rate

Resource: Wolfram Alpha, integrable directly into Mathematica.

Example 2. How long will it take the population to double?

Answer. Use P(t) = P(0)r t :



Exponential Growth — §1.4 23

Determining constants of exponential growth

Goal: Given population data, determine model constants.
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! Take the logarithm of both sides of P(t) = P(0)r t .

! We have ln[P(t)] = .

! A linear fit for P(t) vs. t gives values for and .

! Exponentiate each value to find the values for P(0) and r .
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Determining constants of exponential growth

Here we plot ln[P(t)] as a function of t:
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The line of best fit is approximately ln[P(t)] = 4.4 + 0.0135t.

Therefore our model says P(t) ≈ e4.4(e0.0135)t = 81.5 · (1.014)t .

Analysis: ! History indicates we should split the interval [1900, 1970].
! We have to be careful when trying to extrapolate!

! Important: Transformations distort distances between points, so
verification of a fit should always take place on y versus x axes. !
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Residuals

Once you determine a function of best fit, then you should verify
that it fits well. One way to do this is to look at the residual plot.

Definition: Given a point (xi , yi ) and a function fit f (x), the
residual ri is the error between the actual and predicted values.

Mathematically, ri = yi − f (xi ).

Definition: A residual plot is a plot of the points (xi , ri ).
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Residuals

The structure of the points in the residual plot give clues about
whether the function fits the data well. Three common appearances:

1. Random : Residuals are randomly scattered at a consistent
distance from axis. Indicates a good fit, as on previous page.

2. Curvilinear: Residuals appear to follow a pattern. Indicates
that some aspect of model behavior is not taken into account.

3. Fanning: Residuals small at first and get larger (or vice versa).
Indicates non-constant variability (model better for small x?).
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Interpolation vs. Extrapolation

Suppose you have collected a set of known data points (xi , yi ),
and you would like to estimate the y -value for an unknown x-value.

The name for such an estimation depends on the placement of the
x-value relative to the known x-values.

Interpolation

Inserting one or more x-values
between known x-values.
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Extrapolation

Inserting one or more x-values
outside of the range of known
x-values.
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Interpolation vs. Extrapolation

! The most common method for interpolation is taking a weighted
average of the two nearest data points; suppose x1 < x < x2,
then,

f (x) ≈ y1 +
y2 − y1
x2 − x2

(x − x1).

! In both interpolation and extrapolation, when you have a
function f that is a good fit to the data, simply plug in y = f (x).

! Confidence in approximated values depends on confidence in
your data and your model.

! Confidence in extrapolated data is higher when closer to the
range of known x-values.
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Extrapolation: Running the Mile (p. 162)

Below is a plot of the years in which a record was broken for
running a mile and the record-breaking time.
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The data appears to fit the line T (t) = 15.5639 − 0.00593323t.

Solve for T (t) = 0: You get t ≈ 2623.

Conclusion: In the year 2623, the record will be zero minutes!

! Note the lack of realistic assumptions behind the data.

! Always be careful when you extrapolate!


