
Random Simulation — §5.1 104

Simulation Modeling

How can we determine the best elevator delivery scheme?

! The wait is too long? There are too many stops along the way?

! Inconvenient to experiment with alternate delivery schemes.
! Disrupt normal service
! Take surveys of customers
! Confuse regular customers

! Alternatively, run a computer simulation.
Write a computer program to model the system of elevators.

! Program in the current delivery behavior

Simplifying assumptions: What variables to include?
! Time of arrival of passengers (a random event)
! Passenger destination (a random event)
! Capacity of elevator (fixed by system)
! Speed of elevator (fixed by system)

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.

Random Simulation — §5.1 105

Simulation Modeling

Once you have written the computer program,

Verify that the simulation models the current real-world situation

! Run the model many times.

! Have the computer keep track of data, such as average wait
time, number of stops it takes, longest queue, etc.

! Collect and check against real world behavior data.

Then, modify various parameters in order to simulate a new
delivery scheme.

! How do the data change?

! Is the alternate scheme better or worse?

! Determine how to implement to cause minimal disruption.

Random Simulation — §5.1 106

Pros and Cons of Computer Simulations

PROS:

! It is a relatively easy method to approximate complex systems.

! Once built, it allows for tinkering—easy to do sensitivity analysis.

! It can model systems over difficult-to-measure time frames.

CONS:

! You have to build it. (Expensive to develop!)

! Requires computing power and time.

! Makes you over-confident in the results.

! Dealing with probability, so results will always be of the form:
“With 95% probability, the wait time will be less than 2 minutes.”

Random Simulation — §5.1 107

Simulating flipping a coin

Goal: Use a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use these Mathematica commands:

! RandomInteger gives a pseudo-random integer.
! RandomInteger[] (no input) gives either 0 or 1.
! RandomInteger[{1, 10}] gives an integer from 1 to 10.
! RandomInteger[{1, 10},20] gives a list of 20 such integers.

! RandomReal gives a pseudo-random real number.
! RandomReal[] (no input) gives a real number between 0 or 1.
! RandomReal[{0.1, 0.2}] gives a real number from 0.1 to 0.2.
! RandomReal[{0.1, 0.2},15] gives a list of 15 such numbers.

The first input gives the range; a second input tells how many to make.

The numbers produced by a random number generator are never
truly random because they are produced by an algorithm on a
deterministic machine.

Random Simulation — §5.1 108

Simulating flipping a coin 20 times

Setup: RandomInteger[{0,1},20] gives .

Let’s choose a convention for each: .

The sum of these entries counts: .

In[1]: CoinFlips = RandomInteger[{0,1},20]
Out[1]: {1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}

In[2]: Total[CoinFlips]

Out[2]: 13

Running the commands again will simulate another trial of 20 flips.

Advanced Random Simulation — §5.1 109

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.

If[condition,t,f]

! First, Mathematica evaluates the ‘condition’.

! If ‘condition’ is true, the statement evaluates the ‘t’ part.

! If ‘condition’ is false, the statement evaluates the ‘f’ part.

Examples of conditions:

x < 0 (x == 0) && (y != 1) RandomInteger[] == 1

Note the double equals sign == and not equals !=.

Examples:

! If[x < 0, -x, x] is the function.

! If[RandomInteger[] == 1, "Head", "Tail"]:

Advanced Random Simulation — §5.1 110

Using If statements in Table commands

Goal: Model something that happens 7.5% of the time.

Call RandomReal[] to output: .

The output satisfies 7.5% of the time.

0 1

Anything to the left of the split will be taken as success.

To model this is Mathematica, use an If statement.
trial = RandomReal[]

success = If[trial <= 0.075, 1, 0]

Alternatively, do this is one step:
If[RandomReal[] <= 0.075, 1, 0]

Advanced Random Simulation — §5.1 111

Using If statements in Table commands

That was: If[RandomReal[] <= 0.075, 1, 0]

Let’s run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials = Table[If[RandomReal[] <= 0.075, 1, 0], {500}];

Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Question: How many successes? (Expected value: 500 · 0.075 = 37.5)

! If we add the entries Total[trials], we get # successes.
One time I ran it had 32 successes.

! Alternatively, Tally[trials] gives how many times
distinct entries appear. Output: {{0, 468}, {1, 32}}

! Last, we might want a visualization;
Use Histogram[trials] to get:

0.5 1.0 1.5 2.0

100

200

300

400

500

Advanced Random Simulation — §5.1 112

If statements and For loops

For[start, test, incr, body]

! First, Mathematica evaluates the code in start.

! As long as test is true, (Can happen many times!)

! Continue to evaluate body and do the increment incr.

Example. For[i = 0, i < 4, i++, Print[i]]

! First, Mathematica defines i to be equal to 0.

! Next, it checks to see if i is less than 4.

! It is, so it evaluates Print[i], and increments i by 1 (i++).

! Now i = 1, which is still < 4. So ‘Print[i]’ is evaluated and
i is incremented. Similarly for i = 2 and i = 3. Now i is
incremented to 4, which is NOT < 4, and the loop terminates.

This variable i is called a counter.
Be careful to name counters wisely! They are defined as variables.

Advanced Random Simulation — §5.1 113

Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We’ll write some pseudocode—words that explain what we want
the computer to do, but won’t actually work if we typed them in.

! Run the loop 20 times.
(Keep track using a counter: let loopCount vary from 1 to 20.)

! Each time the loop evaluates,
! Generate a random integer between 0 and 1.
! If ‘1’ output ‘Head’, if ‘0’, output ‘Tail’.

For[loopCount = 1, loopCount <= 20, loopCount++,

flip = RandomInteger[];

If[flip == 1, Print["Head"], Print["Tail"]]]

! Notice the == and also the ; that separates the commands.
! loopCount is ONLY a counter; it does not change each step’s

evaluation.

Advanced Random Simulation — §5.1 114

Simulating flipping a coin

Pimp my code! Let’s keep track of # heads and tails with counters.

headCount: # of heads so far. tailCount: # of tails so far.

! Zero out the counters: ‘headCount=0’ and ‘tailCount=0’.
! Run the loop 20 times by having loopCount vary from 1 to 20.
! Each time the loop evaluates,

! Generate a random integer between 0 and 1.
! If ‘1’, output ‘Head’ AND increase ‘headCount’,
! If ‘0’, output ‘Tail’ AND increase ‘tailCount’.

! After 20 iterations, display ‘headCount’ and ‘tailCount’.

headCount=0; tailCount=0;

For[loopCount = 1, loopCount <= 20, loopCount++,

If[RandomInteger[]==1,

Print["Head"]; headCount++, ← Notice the ‘;’
Print["Tail"]; tailCount++]] ← Notice the ‘++’

{headCount, tailCount}

Advanced Random Simulation — §5.1 115

Simulating rolling a biased die

Suppose you have a four-sided die, where the four sides (A, B, C,
and D) come up with probabilities 1/2, 1/4, 1/8, and 1/8, respectively.

0 1

! Reset the counters: ‘aCount=bCount=cCount=dCount=0’.
! For loopCount from 1 to 20,

! Generate a random real number between 0 and 1.
! If between 0 and 1/2, then output ‘A’ and aCount++

if between 1/2 and 3/4, then output ‘B’ and bCount++
if between 3/4 and 7/8, then output ‘C’ and cCount++
if between 7/8 and 1, then output ’D’ and dCount++

! Display ‘aCount’, ‘bCount’, ‘cCount’, and ‘dCount’.

Advanced Random Simulation — §5.1 116

Simulating rolling a biased die

aCount = 0; bCount = 0; cCount = 0; dCount = 0;

For[loopCount = 1, loopCount <= 20, loopCount++,

roll=RandomReal[];

If[0 <= roll < 1/2, Print["a"]; aCount++];

If[1/2 <= roll < 3/4, Print["b"]; bCount++];

If[3/4 <= roll < 7/8, Print["c"]; cCount++];

If[7/8 <= roll <= 1 , Print["d"]; dCount++];]

distribution = {aCount, bCount, cCount, dCount}

! Sample output: (each on its own line)
a, a, a, d, d, b, a, a, d, a, a, a, a, d, b, a, a, c, a, b {12, 3, 1, 4}

! These If statements all have no “False” part. (; vs ,)
! Important: You MUST set a variable for the roll. Otherwise,

calling RandomInteger four times will have you comparing
different random numbers in each If statement.

! If you are feeling fancy, you can use one Which command
instead of four If commands.

