Random Simulation — §5.1 104

Simulation Modeling

How can we determine the best elevator delivery scheme?

» The wait is too long? There are too many stops along the way?

» Inconvenient to experiment with alternate delivery schemes.
» Disrupt normal service
» Take surveys of customers
» Confuse regular customers
» Alternatively, run a computer simulation.
Write a computer program to model the system of elevators.

» Program in the current delivery behavior

Simplifying assumptions: What variables to include?

» Time of arrival of passengers (a random event)
» Passenger destination (a random event)

» Capacity of elevator (fixed by system)

» Speed of elevator (fixed by system)

Definition: A simulation that incorporates an element of
randomness is called a Monte Carlo simulation.



Random Simulation — §5.1 105

Simulation Modeling

Once you have written the computer program,

Verity that the simulation models the current real-world situation
» Run the model many times.

» Have the computer keep track of data, such as average wait
time, number of stops it takes, longest queue, etc.

» Collect and check against real world behavior data.

Then, modify various parameters in order to simulate a new
delivery scheme.

» How do the data change?
» Is the alternate scheme better or worse?

» Determine how to implement to cause minimal disruption.



Random Simulation — §5.1 106

Pros and Cons of Computer Simulations

PROS:

» It is a relatively easy method to approximate complex systems.
» Once built, it allows for tinkering—easy to do sensitivity analysis.

» It can model systems over difficult-to-measure time frames.

CONS:
» You have to build it. (Expensive to develop!)

» Requires computing power and time.

» Makes you over-confident in the results.

» Dealing with probability, so results will always be of the form:
“With 95% probability, the wait time will be less than 2 minutes.”



Random Simulation — §5.1 107
Simulating flipping a coin

Goal: Use a computer to simulate flipping a fair coin 20 times.

To simulate a random event, use these Mathematica commands:

» RandomInteger gives a pseudo-random integer.

» RandomInteger[] (no input) gives either O or 1.

» RandomInteger[{1, 10}] gives an integer from 1 to 10.

» RandomInteger[{1, 10},20] gives a list of 20 such integers.
» RandomReal gives a pseudo-random real number.

» RandomReall[] (no input) gives a real number between 0 or 1.
» RandomReal[{0.1, 0.2}] gives a real number from 0.1 to 0.2.
» RandomReal[{0.1, 0.2},15] gives a list of 15 such numbers.

The first input gives the range; a second input tells how many to make.

The numbers produced by a random number generator are never
truly random because they are produced by an algorithm on a
deterministic machine.



Random Simulation — §5.1 108

Simulating flipping a coin 20 times

Setup: RandomInteger[{0,1},20] gives

L et's choose a convention for each:

The sum of these entries counts:

In[1]: CoinFlips = RandomInteger[{0,1},20]
Out[1]: {1,0,1,0,1,1,0,0,1,1,1,1,1,0,0,0,1,1, 1, 1}

In[2]: Total[CoinFlips]
Out[2]: 13

Running the commands again will simulate another trial of 20 flips.



Advanced Random Simulation — §5.1 109

If statements and For loops

In order to incorporate more complex aspects into the model, use
If statements and For loops.
If[condition,t,f]

» First, Mathematica evaluates the ‘condition’'.

» If ‘condition’ is true, the statement evaluates the ‘t’ part.

» If ‘condition’ is false, the statement evaluates the ‘£’ part.

Examples of conditions:
(x ==0) & (y !'= 1) RandomInteger[] ==
Note the double equals sign == and not equals !=.
Examples:
» If[x < 0, -x, x] is the function.
» If[RandomInteger[] == 1, "Head", "Tail"]:




Advanced Random Simulation — §5.1

Using If statements in Table commands

Goal: Model something that happens 7.5% of the time.

Call RandomReal [] to output:

The output satisfies 7.5% of the time

0 1
Anything to the left of the split will be taken as success.
To model this is Mathematica, use an If statement.

trial = RandomReal[]
success = If[trial <= 0.075, 1, O]

Alternatively, do this is one step:
If [RandomReal[] <= 0.075, 1, O]

110



Advanced Random Simulation — §5.1 111

Using If statements in Table commands

That was: If [RandomReall[] <= 0.075, 1, 0]

Let's run this command many times and visualize the results:
Remember that Table will repeat a command multiple times:

trials = Table[If[RandomReal[] <= 0.075, 1, 0], {500}];
Output: 500-entry list, where each entry is 0 (failure) or 1 (success).

Question: How many successes? (Expected value: 500 - 0.075 = 37.5)

» If we add the entries Total [trials], we get # successes.
One time | ran it had 32 successes.

» Alternatively, Tally[trials] gives how many times
distinct entries appear. Output: {{0, 468}, {1, 32}}

» Last, we might want a visualization;
Use Histogram[trials] to get:




Advanced Random Simulation — §5.1 112

If statements and For loops

For[start, , incr, body]
» First, Mathematica evaluates the code in start.
» As long as IS true,
» Continue to evaluate body and do the increment incr.

Example. For[i = 0, 1 < 4, i++, Print[i]]
» First, Mathematica defines i to be equal to 0.
» Next, it checks to see it i
» It is, so it evaluates Print[i], and increments i by 1 (i++).
>

Now i = 1, which is still < 4. So ‘Print[i]’ is evaluated and
i is incremented. Similarly for i =2 and i = 3. Now i is
incremented to 4, which is NOT < 4, and the loop terminates.

This variable i is called a counter.
Be careful to name counters wisely! They are defined as variables.



Advanced Random Simulation — §5.1
Simulating flipping a coin

Example. Simulate flipping a fair coin 20 times using a for loop.

We'll write some pseudocode—words that explain what we want
the computer to do, but won't actually work if we typed them in.

» Run the loop 20 times.
loopCount

» Each time the loop evaluates,
» Generate a random integer between 0 and 1.

» If ‘1" output ‘Head’, if ‘0", output ‘Tail'.
For[loopCount = 1, loopCount <= 20, loopCount++,

flip = RandomInteger[];
If[flip == 1, Print["Head"], Print["Tail"]]]

» Notice the == and also the ; that separates the commands.
» loopCount is ONLY a counter; it does not change each step’s

evaluation.

113



Advanced Random Simulation — §5.1 114
Simulating flipping a coin

Pimp my code! Let's keep track of # heads and tails with counters.

headCount: # of heads so far. tailCount: # of tails so far.

» Zero out the counters: 'headCount=0" and ‘tailCount=0’.

» Run the loop 20 times by having loopCount vary from 1 to 20.

» Each time the loop evaluates,
» Generate a random integer between 0 and 1.
» If ‘1", output ‘Head” AND increase 'headCount’,
» If ‘0’, output ‘Tail’ AND increase ‘tailCount’.

» After 20 iterations, display ‘headCount’ and ‘tailCount’.

headCount=0; tailCount=0;
For[loopCount = 1, loopCount <= 20, loopCount++,
If [RandomInteger[]==1,
Print["Head"]; headCount++, < Notice the *;’
Print["Tail"]; tailCount++]] < Notice the ++
{headCount, tailCount}



Advanced Random Simulation — §5.1 115

Simulating rolling a biased die

Suppose you have a four-sided die, where the four sides (A, B, C,
and D) come up with probabilities 1/2, 1/4, 1/8, and 1/8, respectively.

» Reset the counters: ‘aCount=bCount=cCount=dCount=0".
» For loopCount from 1 to 20,
» Generate a random real number between 0 and 1.
» If between 0 and 1/2, then output ‘A’ and aCount++
if between 1/2 and 3/4, then output ‘B’ and bCount++
if between 3/4 and 7/8, then output ‘C’ and cCount++
if between 7/8 and 1, then output 'D’ and dCount++

» Display ‘aCount’, ‘bCount’, ‘cCount’, and ‘dCount’.



Advanced Random Simulation — §5.1

Simulating rolling a biased die

116

aCount = 0; bCount = 0; cCount = 0; dCount = 0;
For [loopCount = 1, loopCount <= 20, loopCount++,
roll=RandomReal[];

If[

If
If
If

0 <= roll < 1/2, Print
[1/2 <= roll < 3/4, Print
[3/4 <= roll < 7/8, Print

"a"]; aCount++];
"b"]; bCount++];
"c"]; cCount++];
[7/8 <= roll <=1 , Print["d"]; dCount++]

)
)

)

;

distribution = {aCount, bCount, cCount, dCount}

>

>

Sample output: (each on its own line)
a,a,a,d d b ,a, a,d a a a a,d b,a a, c a b

{12,3,1,4}

These If statements all have no “False” part. (; vs ,)
Important: You MUST set a variable for the roll. Otherwise,
calling RandomInteger four times will have you comparing

different random numbers in each If statement.

If you are feeling fancy, you can use one Which command

instead of four If commands.



