Errors inherent in the modeling process

Models always have errors \rightsquigarrow

- Be aware of them.
- Understand and account for them!
- Include in model discussion.

Types of Errors

1. Formulation Errors occur when simplifications or assumptions are made. (\star)
2. Observation Errors occur during data collection. (\star)
3. Truncation Errors occur when you approximate an incalculable function.
4. Rounding Errors occur during calculations when your computing device can't keep track of exact numbers.

Errors inherent in the modeling process

1. Formulation Errors occur when simplifications or assumptions are made.

Example from the book, pp. 70-73: Seismology.
Set off an explosion at one place and measure it at another (dist. D). Create a model to determine the depth of a layer in the crust based on the time for the initial explosion to arrive T, and the second shock T^{\prime}.

$$
d=\frac{D}{2} \sqrt{\left(T^{\prime} / T\right)^{2}-1}
$$

Assumptions: The earth is flat, and the layer is parallel to the surface.
If layers are not parallel (off by α°), the percent errors can be large!

α	1	5	10	30
$\%$ error in d	3.4	18	37	105

Errors inherent in the modeling process

2. Observation Errors occur during data collection.

Continuation of the previous example:
Even if the layers are parallel, perhaps our timing is inaccurate. Let's say that T is 1 second and T^{\prime} is 1.2 seconds, but that our timer is off by at most 1%.

Then T might be ___ seconds or ___ seconds, and T^{\prime} might be ___ seconds or ___ seconds.

T	over	over	under	under
T^{\prime}	over	under	over	under
$\%$ error in d	-0.5%	-5%	$+6 \%$	0%

One way to decrease influence: measure many times, take average.

Errors inherent in the modeling process

3. Truncation Errors occur when you approximate an incalculable function.
Question: When is $x^{5}+x-1=0$? What is $\sin 1$? Numerically?
Answer: Use a Taylor series approximation:

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

4. Rounding Errors occur during calculations when your computing device can't keep track of exact numbers.
Question: What is 1.2300001^{10} ?
Answer: If we only have three-digit accuracy, then
$1.23 \cdot 1.23=1.51, \quad 1.23 \cdot 1.51=1.86 \quad \ldots \quad 1.23^{10}=7.95$
$1.2300001 \cdot 1.2300001=1.5129002,1.2300001 \cdot 1.5129002=1.8608674$,
$1.2300001^{10}=7.9259523$
True answer: $7.925952539912863452584748018737649320039805 \ldots$
