Correlation

Goal: Find cause and effect links between variables. What can we conclude when two variables are highly correlated?

Positive Correlation
High values of x are associated with high values of y.

Negative Correlation
High values of x are associated with low values of y.

The **correlation coefficient**, R^2 is a number between 0 and 1. Values near 1 show strong correlation (data lies almost on a line). Values near 0 show weak correlation (data doesn’t lie on a line).
Calculating the R^2 Statistic

To find R^2, you need data and its best fit linear regression. Calculate:

- The **error sum of squares**: $SSE = \sum_i [y_i - f(x_i)]^2$.
 - SSE is the variation between the data and the function.
 - Note: this is what “least squares” minimizes.

- The **total corrected sum of squares**: $SST = \sum_i [y_i - \bar{y}]^2$.
 - SST is the variation solely due to the data.

- Now calculate $R^2 = 1 - \frac{SSE}{SST}$.
 - R^2 is the proportion of variation explained by the function.

Is my R^2 good? Use a critical value table for R. (Note: not R^2.)
http://www.gifted.uconn.edu/siegle/research/correlation/corrchrt.htm
Example. (cont’d from notes p. 33) What is R^2 for the data set: \{(1.0, 3.6), (2.1, 2.9), (3.5, 2.2), (4.0, 1.7)\}?

You first need the regression line: $f(x) = -0.605027x + 4.20332$.

- The error sum of squares: $SSE = \sum \left[y_i - f(x_i) \right]^2$.

\[
SSE = (3.6 - f(1.0))^2 + (2.9 - f(2.1))^2 + (2.2 - f(3.5))^2 + (1.7 - f(4.0))^2 \\
= (.0017)^2 + (-0.033)^2 + (0.114)^2 + (-0.083)^2 = 0.0210
\]

- The total corrected sum of squares: $SST = \sum \left[y_i - \bar{y} \right]^2$.

First, calculate $\bar{y} = (3.6 + 2.9 + 2.2 + 1.7)/4 = 2.6$

\[
SST = (3.6 - 2.6)^2 + (2.9 - 2.6)^2 + (2.2 - 2.6)^2 + (1.7 - 2.6)^2 \\
= (1)^2 + (0.3)^2 + (-0.4)^2 + (-0.9)^2 = 2.06
\]

Now calculate $R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{0.0210}{2.06} = 1 - .01 = 0.99$.

Calculating the R^2 Statistic
Another R^2 Calculation

Here is a list of heights and weights for ten students.

We calculate the line of best fit:

\[(\text{weight}) = 7.07(\text{height}) - 333.\]

Now find the correlation coefficient: \((\bar{w} = 173)\)

\[SSE = \sum_{i=1}^{10} [w_i - (7.07 h_i - 333)]^2 \approx 2808\]

\[SST = \sum_{i=1}^{10} [w_i - 173]^2 = 6910\]

So \(R^2 = 1 - \frac{2808}{6910} = 0.59\), a good correlation.

We can introduce another variable to see if the fit improves.
Multiple Linear Regression

Add waist measurements to the data!

We wish to calculate a *linear* relationship such as:

\[(\text{weight}) = a(\text{height}) + b(\text{waist}) + c.\]

Do a regression to find the *best-fit plane*:

Use the least-squares criterion. Minimize:

\[
SSE = \sum_{(h_i, ws_i, wt_i)} \left[wt_i - (a \cdot h_i + b \cdot ws_i + c) \right]^2.
\]

This finds that the best fit plane is

\[(\text{weight}) = 4.59(\text{height}) + 6.35(\text{waist}) - 368.\]
Multiple Linear Regression

Visually, we might expect a plane to do a better job fitting the points than the line.

▶ Now calculate R^2.

Calculate $SSE = \sum_{i=1}^{10} (w_i - f(h_i, ws_i))^2 \approx 955$

SST does not change: (why?)

$\sum_{i=1}^{10} (w_i - 173)^2 = 6910$

So $R^2 = 1 - (955/6910) = 0.86$, an excellent correlation.

▶ When you introduce more variables, SSE can only go down, so R^2 always increases.
Notes about the Correlation Coefficient

Example. Time and Distance (pp. 190)
Data collected to predict driving time from home to school.

Variables:

\[T = \text{driving time} \quad S = \text{Last two digits of SSN.} \]
\[M = \text{miles driven} \]

Use a linear regression to find that

\[T = 1.89M + 8.05, \text{ with an } R^2 = 0.867. \]

Compare to a multiple linear regression of

\[T = 1.7M + 0.0872S + 13.2, \text{ with an } R^2 = 0.883! \]

- \(R^2 \) increases as the number of variables increase.
- This doesn’t mean that the fit is better!
Notes about the Correlation Coefficient

Example. Cancer and Fluoridation. (pp. 188–189)
Does fluoride in the water cause cancer?

Variables:

\[T = \log \text{ of years of fluoridation} \quad A = \% \text{ of population over 65.} \]

\[C = \text{cancer mortality rate} \]

Use a linear regression to find that

\[C = 27.1T + 181, \text{ with an } R^2 = 0.047. \]

Compare to a multiple linear regression of

\[C = 0.566T + 10.6A + 85.8, \text{ with an } R^2 = 0.493. \]

- Be suspicious of a low \(R^2 \).
- Signs of coefficients tell positive/negative correlation.
- Cannot determine relative influence of one variable in one model without some gauge on the magnitude of the data.
- **CAN** determine relative influence of one variable in two models.