The language of optimization

Optimization questions cover a wide variety of situations.

The language of optimization

Optimization questions cover a wide variety of situations.
Example. You are given the choice of one of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike \& Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M\&M's

The language of optimization

Optimization questions cover a wide variety of situations.
Example. You are given the choice of one of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike \& Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M\&M's

Fact: You face an optimization problem.

The language of optimization

Optimization questions cover a wide variety of situations.
Example. You are given the choice of one of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike \& Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M\&M's

Fact: You face an optimization problem.
It has a feasible set: The set of all valid choices.

The language of optimization

Optimization questions cover a wide variety of situations.
Example. You are given the choice of one of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike \& Ikes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M\&M's

Fact: You face an optimization problem.
It has a feasible set: The set of all valid choices.
It has an objective function: The function we are optimizing
over the feasible set.

$$
f:\left\{\begin{array}{c}
\text { feasible } \\
\text { set }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { some measure } \\
\text { of goodness }
\end{array}\right\}
$$

The language of optimization

Optimization questions cover a wide variety of situations.
Example. You are given the choice of one of the following candies.

Snickers bar	Gourmet chocolate square
Box of Mike \& lIkes	Bounty (Coconut+Almond)
Swedish Fish	Tootsie roll lollypop
Kitkat Bar	Three Marshmallow Peeps
Licorice	Peanut M\&M's

Fact: You face an optimization problem.
It has a feasible set: The set of all valid choices.
It has an objective function: The function we are optimizing
over the feasible set.

$$
f:\left\{\begin{array}{c}
\text { feasible } \\
\text { set }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { some measure } \\
\text { of goodness }
\end{array}\right\}
$$

Our feasible set is \qquad and the objective function is \qquad

Linear Optimization

We will focus on linear optimization.

Linear Optimization

We will focus on linear optimization.

- Feasible set: subset of \mathbb{R}^{n} defined by linear inequalities.

Linear Optimization

We will focus on linear optimization.

- Feasible set: subset of \mathbb{R}^{n} defined by linear inequalities.
- Objective function: linear combination of the input variables.

Linear Optimization

We will focus on linear optimization.

- Feasible set: subset of \mathbb{R}^{n} defined by linear inequalities.
- Objective function: linear combination of the input variables.

Comprehension goals:

- What is a linear program?
- Visualizing linear programs graphically.
- Understanding solutions graphically.
- Solving linear programs using Mathematica.
- Performing sensitivity analysis on linear programs.

Fertilizer example (p.253)

A fertilizer manufacturer uses nitrates and phosphates to make batches of two different kinds of fertilizer.

- Sod-King fertilizer
- Gro-Turf fertilizer

Fertilizer example (p.253)

A fertilizer manufacturer uses nitrates and phosphates to make batches of two different kinds of fertilizer.

- Sod-King fertilizer needs 4 phosphates, 18 nitrates.
- Gro-Turf fertilizer needs 1 phosphate, 15 nitrates.

Fertilizer example (p.253)

A fertilizer manufacturer uses nitrates and phosphates to make batches of two different kinds of fertilizer.

- Sod-King fertilizer needs 4 phosphates, 18 nitrates.
- Gro-Turf fertilizer needs 1 phosphate, 15 nitrates.

The company has 10 phosphates and 66 nitrates on hand.

Fertilizer example (p.253)

A fertilizer manufacturer uses nitrates and phosphates to make batches of two different kinds of fertilizer.

- Sod-King fertilizer needs 4 phosphates, 18 nitrates.
- Gro-Turf fertilizer needs 1 phosphate, 15 nitrates.

The company has 10 phosphates and 66 nitrates on hand.
The profit for one batch of Sod-King is $\$ 1000$. The profit for one batch of Gro-Turf is $\$ 500$.

Fertilizer example (p.253)

A fertilizer manufacturer uses nitrates and phosphates to make batches of two different kinds of fertilizer.

- Sod-King fertilizer needs 4 phosphates, 18 nitrates.
- Gro-Turf fertilizer needs 1 phosphate, 15 nitrates.

The company has 10 phosphates and 66 nitrates on hand.
The profit for one batch of Sod-King is $\$ 1000$. The profit for one batch of Gro-Turf is $\$ 500$.

Question. How many batches of each should the company make to earn the most profit?

Fertilizer example (p.253)

A fertilizer manufacturer uses nitrates and phosphates to make batches of two different kinds of fertilizer.

- Sod-King fertilizer needs 4 phosphates, 18 nitrates.
- Gro-Turf fertilizer needs 1 phosphate, 15 nitrates.

The company has 10 phosphates and 66 nitrates on hand.
The profit for one batch of Sod-King is $\$ 1000$.
The profit for one batch of Gro-Turf is $\$ 500$.
Question. How many batches of each should the company make to earn the most profit?

Initial thoughts?

- What do we need to know to make the problem precise?
- What intuition do you have for what the answer should be?

Fertilizer example (p.253)

Translate the problem into mathematics:
We must determine how many batches to make of each.

- Let x represent the number of batches of Sod-King made.
- Let y represent the number of batches of Gro-Turf made.

Fertilizer example (p.253)

Translate the problem into mathematics:
We must determine how many batches to make of each.

- Let x represent the number of batches of Sod-King made.
- Let y represent the number of batches of Gro-Turf made.

What are the constraints on what x and y can be?

- Phosphate constraint:

Fertilizer example (p.253)

Translate the problem into mathematics:
We must determine how many batches to make of each.

- Let x represent the number of batches of Sod-King made.
- Let y represent the number of batches of Gro-Turf made.

What are the constraints on what x and y can be?

- Phosphate constraint:
- Nitrate constraint:

Fertilizer example (p.253)

Translate the problem into mathematics:
We must determine how many batches to make of each.

- Let x represent the number of batches of Sod-King made.
- Let y represent the number of batches of Gro-Turf made.

What are the constraints on what x and y can be?

- Phosphate constraint:
- Nitrate constraint:
- Non-negativity constraints:

Fertilizer example (p.253)

Translate the problem into mathematics:
We must determine how many batches to make of each.

- Let x represent the number of batches of Sod-King made.
- Let y represent the number of batches of Gro-Turf made.

What are the constraints on what x and y can be?

- Phosphate constraint:
- Nitrate constraint:
- Non-negativity constraints:

What are we trying to maximize?

- Profit:

Linear Programs

$$
\begin{array}{rlr}
\text { Maximize } 1000 x+500 y & \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } \quad 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{array}
$$

Linear Programs

$$
\begin{array}{rlr}
\text { Maximize } 1000 x+500 y & \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } & 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{array}
$$

This is a linear program, an optimization problem of the form:

Maximize $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$ (the objective function)
subject to
(the constraints):

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2} \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}
\end{gathered}
$$

Linear Programs

Maximize $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$ (the objective function)
subject to $a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1}$
(the constraints): $\quad a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2}$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}
$$

Notes about linear programs:

- Constraints may be of the form $\leq,=$, or \geq.

Linear Programs

Maximize $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$ (the objective function)
subject to $a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1}$
(the constraints): $\quad a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2}$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}
$$

Notes about linear programs:

- Constraints may be of the form $\leq,=$, or \geq.
- The x_{i} variables are called decision variables.

Linear Programs

Maximize $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$ (the objective function)
subject to $a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2}$
(the constraints):

$$
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}
$$

Notes about linear programs:

- Constraints may be of the form $\leq,=$, or \geq.
- The x_{i} variables are called decision variables.
- The decision variables can take on any real \#, not only integers.

Linear Programs

Maximize $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$ (the objective function)
subject to

$$
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1}
$$

(the constraints): $\quad a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2}$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}
$$

Notes about linear programs:

- Constraints may be of the form $\leq,=$, or \geq.
- The x_{i} variables are called decision variables.
- The decision variables can take on any real \#, not only integers.
- All constraints and the objective functions are linear combinations of the decision variables. (Coefficients are constants.)

Linear Programs

Maximize $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$ (the objective function)
subject to

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq & b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq & b_{m}
\end{array}
$$

$$
\text { (the constraints): } \quad a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2}
$$

Notes about linear programs:

- Constraints may be of the form $\leq,=$, or \geq.
- The x_{i} variables are called decision variables.
- The decision variables can take on any real \#, not only integers.
- All constraints and the objective functions are linear combinations of the decision variables. (Coefficients are constants.)
- A linear program in the above form is "easy to solve".

Fertilizer example, graphically

$$
\begin{aligned}
\text { Maximize } 1000 x+500 y & \\
\text { subject to } \quad 4 x+y & \leq 10 \\
\text { the constraints: } \quad 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

Let's consider our example graphically.

Fertilizer example, graphically

$$
\begin{array}{rlr}
\text { Maximize } 1000 x+500 y & \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } \quad 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{array}
$$

Let's consider our example graphically.
Definition: The set of points (x, y) that satisfy the constraints is called the feasible region.

Fertilizer example, graphically

$$
\begin{array}{rlrl}
\text { Maximize } 1000 x+500 y & \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } & 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{array}
$$

Let's consider our example graphically.
Definition: The set of points (x, y) that satisfy the constraints is called the feasible region.

- In general, points of form $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- Feasible region always a polytope. (Always has flat sides and is convex.)
- Feasible region may be bounded or unbounded; might be empty.

Fertilizer example, graphically

$$
\begin{aligned}
& \text { Maximize } 1000 x+500 y \\
& \text { subject to } \begin{aligned}
4 x+y & \leq 10 \\
\text { the constraints: } \quad 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
\end{aligned}
$$

\star The solution to the optimization problem will be the point in the feasible region that optimizes the objective function. \star

Fertilizer example, graphically

$$
\begin{array}{rlr}
\text { Maximize } 1000 x+500 y & \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } \quad 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{array}
$$

\star The solution to the optimization problem will be the point in the feasible region that optimizes the objective function. \star Is there a point in the feasible region such that $1000 x+500 y=2000$?

Fertilizer example, graphically

$$
\begin{aligned}
& \text { Maximize } 1000 x+500 y \\
& \text { subject to } \begin{aligned}
4 x+y & \leq 10 \\
\text { the constraints: } \quad 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
\end{aligned}
$$

\star The solution to the optimization problem will be the point
in the feasible region that optimizes the objective function. \star Is there a point in the feasible region such that $1000 x+500 y=2000$? Is there a point in the feasible region such that $1000 x+500 y=4000$?

As we plot these lines of constant objective, we notice that

- They are parallel.

Fertilizer example, graphically

$$
\begin{array}{rlr}
\text { Maximize } 1000 x+500 y & \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } \quad 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{array}
$$

\star The solution to the optimization problem will be the point in the feasible region that optimizes the objective function. \star Is there a point in the feasible region such that $1000 x+500 y=2000$? Is there a point in the feasible region such that $1000 x+500 y=4000$?
As we plot these lines of constant objective, we notice that

- They are parallel.
- If there is a feasible region, at least one line will intersect it.

Fertilizer example, graphically

$$
\begin{array}{rlr}
\text { Maximize } 1000 x+500 y & \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } \quad 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{array}
$$

\star The solution to the optimization problem will be the point in the feasible region that optimizes the objective function. \star Is there a point in the feasible region such that $1000 x+500 y=2000$? Is there a point in the feasible region such that $1000 x+500 y=4000$?
As we plot these lines of constant objective, we notice that

- They are parallel.
- If there is a feasible region, at least one line will intersect it.
- As we increase the "constant", the last place we touch the feasible region is

Fertilizer example, graphically

$$
\begin{array}{rlr}
\text { Maximize } 1000 x+500 y & \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } \quad 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{array}
$$

\star The solution to the optimization problem will be the point in the feasible region that optimizes the objective function. \star Is there a point in the feasible region such that $1000 x+500 y=2000$? Is there a point in the feasible region such that $1000 x+500 y=4000$?
As we plot these lines of constant objective, we notice that

- They are parallel.
- If there is a feasible region, at least one line will intersect it.
- As we increase the "constant", the last place we touch the feasible region is on the boundary, at one or more corners.

Linear Optimization

We have intuited the following theorem.
Theorem. The maximum (or minimum) in a linear program either:

1. Occurs at a corner point of the feasible region.

Linear Optimization

We have intuited the following theorem.
Theorem. The maximum (or minimum) in a linear program either:

1. Occurs at a corner point of the feasible region.
2. Doesn't exist (then we call the problem unbounded)

Linear Optimization

We have intuited the following theorem.
Theorem. The maximum (or minimum) in a linear program either:

1. Occurs at a corner point of the feasible region.
2. Doesn't exist (then we call the problem unbounded)

Strategy for solving a linear optimization problem:
0 . Determine the decision variables, objective function, and constraints.

Linear Optimization

We have intuited the following theorem.
Theorem. The maximum (or minimum) in a linear program either:

1. Occurs at a corner point of the feasible region.
2. Doesn't exist (then we call the problem unbounded)

Strategy for solving a linear optimization problem:
0 . Determine the decision variables, objective function, and constraints.

1. Draw the feasible region.

Linear Optimization

We have intuited the following theorem.
Theorem. The maximum (or minimum) in a linear program either:

1. Occurs at a corner point of the feasible region.
2. Doesn't exist (then we call the problem unbounded)

Strategy for solving a linear optimization problem:
0 . Determine the decision variables, objective function, and constraints.

1. Draw the feasible region.
2. Compute the coordinates of all corner points. (You must think!)

Linear Optimization

We have intuited the following theorem.
Theorem. The maximum (or minimum) in a linear program either:

1. Occurs at a corner point of the feasible region.
2. Doesn't exist (then we call the problem unbounded)

Strategy for solving a linear optimization problem:
0 . Determine the decision variables, objective function, and constraints.

1. Draw the feasible region.
2. Compute the coordinates of all corner points. (You must think!)
3. Evaluate the objective function at each corner point.

Linear Optimization

We have intuited the following theorem.
Theorem. The maximum (or minimum) in a linear program either:

1. Occurs at a corner point of the feasible region.
2. Doesn't exist (then we call the problem unbounded)

Strategy for solving a linear optimization problem:
0 . Determine the decision variables, objective function, and constraints.

1. Draw the feasible region.
2. Compute the coordinates of all corner points. (You must think!)
3. Evaluate the objective function at each corner point.
4. Pick out the optimum value.

Solution of fertilizer example

Maximize $p(x, y)=1000 x+500 y$		
subject to	$4 x+y$	≤ 10
the constraints:	$18 x+15 y$	≤ 66
x	≥ 0	
y	≥ 0	

1. Draw the feasible region. (Done!)

Solution of fertilizer example

$$
\begin{array}{rlrl}
\text { Maximize } p(x, y)=1000 x+500 y \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } & & 18 x+15 y & \leq 66 \\
& & \geq 0 \\
y & \geq 0
\end{array}
$$

1. Draw the feasible region. (Done!)
2. Compute the coordinates of all corner points.

- Find the constraints that intersect; solve the associated equalities.
(Not all intersections!)

Solution of fertilizer example

$$
\begin{array}{rlrl}
\text { Maximize } p(x, y)=1000 x+500 y \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } & & 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{array}
$$

1. Draw the feasible region. (Done!)
2. Compute the coordinates of all corner points.

- Find the constraints that intersect; solve the associated equalities.
- $x \geq 0$ and $y \geq 0:(0,0)$.
(Not all intersections!)

Solution of fertilizer example

$$
\begin{array}{rlrl}
\text { Maximize } p(x, y)=1000 x+500 y \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } & & 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{array}
$$

1. Draw the feasible region. (Done!)
2. Compute the coordinates of all corner points.

- Find the constraints that intersect; solve the associated equalities.
- $x \geq 0$ and $y \geq 0:(0,0)$.
(Not all intersections!)
- $x \geq 0$ and $18 x+15 y \leq 66:(0,22 / 5)$.

Solution of fertilizer example

$$
\begin{array}{rlrl}
\text { Maximize } p(x, y)=1000 x+500 y \\
\text { subject to } & & 4 x+y & \leq 10 \\
\text { the constraints: } & & 18 x+15 y & \leq 66 \\
& & \geq 0 \\
& & \geq 0
\end{array}
$$

1. Draw the feasible region. (Done!)
2. Compute the coordinates of all corner points.

- Find the constraints that intersect; solve the associated equalities.
- $x \geq 0$ and $y \geq 0:(0,0)$.
- $x \geq 0$ and $18 x+15 y \leq 66:(0,22 / 5)$.
- $y \geq 0$ and $4 x+y \leq 10:(5 / 2,0)$

Solution of fertilizer example

$$
\begin{array}{rlrl}
\text { Maximize } p(x, y)=1000 x+500 y \\
\text { subject to } & & 4 x+y & \leq 10 \\
\text { the constraints: } & & 18 x+15 y & \leq 66 \\
& & \geq 0 \\
& & \geq 0
\end{array}
$$

1. Draw the feasible region. (Done!)
2. Compute the coordinates of all corner points.

- Find the constraints that intersect; solve the associated equalities.
- $x \geq 0$ and $y \geq 0$: $(0,0)$.
(Not all intersections!)
- $x \geq 0$ and $18 x+15 y \leq 66:(0,22 / 5)$.
- $y \geq 0$ and $4 x+y \leq 10:(5 / 2,0)$
- $18 x+15 y \leq 66$ and $4 x+y \leq 10:(2,2)$.

Solution of fertilizer example

$$
\begin{array}{rlrl}
\text { Maximize } p(x, y)=1000 x+500 y \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } & & 18 x+15 y & \leq 66 \\
& & \geq 0 \\
y & \geq 0
\end{array}
$$

1. Draw the feasible region. (Done!)
2. Compute the coordinates of all corner points.

- Find the constraints that intersect; solve the associated equalities.
- $x \geq 0$ and $y \geq 0:(0,0)$.
(Not all intersections!)
- $x \geq 0$ and $18 x+15 y \leq 66:(0,22 / 5)$.
- $y \geq 0$ and $4 x+y \leq 10:(5 / 2,0)$
- $18 x+15 y \leq 66$ and $4 x+y \leq 10:(2,2)$.

3. Evaluate the objective function at each corner point.

- $p(0,0)=0 \quad-p(0,22 / 5)=2200$
- $p(5 / 2,0)=2500$
- $p(2,2)=3000$.

Solution of fertilizer example

$$
\begin{array}{rlrl}
\text { Maximize } p(x, y)=1000 x+500 y \\
\text { subject to } & 4 x+y & \leq 10 \\
\text { the constraints: } & & 18 x+15 y & \leq 66 \\
x & \geq 0 \\
y & \geq 0
\end{array}
$$

1. Draw the feasible region. (Done!)
2. Compute the coordinates of all corner points.

- Find the constraints that intersect; solve the associated equalities.
- $x \geq 0$ and $y \geq 0:(0,0)$.
(Not all intersections!)
- $x \geq 0$ and $18 x+15 y \leq 66:(0,22 / 5)$.
- $y \geq 0$ and $4 x+y \leq 10:(5 / 2,0)$
- $18 x+15 y \leq 66$ and $4 x+y \leq 10:(2,2)$.

3. Evaluate the objective function at each corner point.

- $p(0,0)=0$
- $p(0,22 / 5)=2200$
- $p(5 / 2,0)=2500$
- $p(2,2)=3000$.

4. Pick out the optimum value. [Max value: $\$ 3000$, occurs at $(2,2)$.]

Using Mathematica to solve a linear program

Once you have written your optimization problem as a linear program, you can use Mathematica to solve your problem.

Using Mathematica to solve a linear program

Once you have written your optimization problem as a linear program, you can use Mathematica to solve your problem.

Use either the Maximize or Minimize command.
Syntax: Maximize[\{obj, constr\}, vars]

Using Mathematica to solve a linear program

Once you have written your optimization problem as a linear program, you can use Mathematica to solve your problem.

Use either the Maximize or Minimize command.
Syntax: Maximize[\{obj, constr\}, vars]

- obj is the objective function that you wish to optimize.
- constr are the set of all constraints, joined with \&\&'s (ANDs).
- vars is the set of variables.

Using Mathematica to solve a linear program

Once you have written your optimization problem as a linear program, you can use Mathematica to solve your problem.

Use either the Maximize or Minimize command.
Syntax: Maximize[\{obj, constr\}, vars]

- obj is the objective function that you wish to optimize.
- constr are the set of all constraints, joined with \&\&'s (ANDs).
- vars is the set of variables.
$\ln [1]:$ Maximize[\{1000 x +500 y ,

$$
x>=0 \& \& y>=0 \& \& 4 x+y<=10 \& \& 18 x+15 y<=66\}, \quad\{x, y\}]
$$

$\operatorname{Out}[1]:\{3000,\{x->2, y->2\}\}$

Using Mathematica to solve a linear program

Once you have written your optimization problem as a linear program, you can use Mathematica to solve your problem.

Use either the Maximize or Minimize command.
Syntax: Maximize[\{obj, constr\}, vars]

- obj is the objective function that you wish to optimize.
- constr are the set of all constraints, joined with \&\&'s (ANDs).
- vars is the set of variables.
$\ln [1]:$ Maximize[\{1000 $x+500 y$,

$$
x>=0 \& \& y>=0 \& \& 4 x+y<=10 \& \& 18 x+15 y<=66\}, \quad\{x, y\}]
$$

Out[1]: $\{3000,\{x->2, y->2\}\}$
Output: Optimum value and optimum point.

