Simulating a doctor’s waiting room

Goal: Simulate the queuing behavior at a doctor’s office.

Assumptions:

1. Patients arrive on the minutes between 9:00 am and 11:59 am.
2. At most one patient arrives during any minute.
3. The probability that a patient arrives in any one minute is 0.075.
4. Each patient needs to meet with the doctor for 15 minutes.
Simulating a doctor’s waiting room

Goal: Simulate the queuing behavior at a doctor’s office.

Assumptions:

1. Patients arrive on the minutes between 9:00 am and 11:59 am.
2. At most one patient arrives during any minute.
3. The probability that a patient arrives in any one minute is 0.075.
4. Each patient needs to meet with the doctor for 15 minutes.

Expectations:

1. How many patients does the doctor expect to see in the day?
Simulating a doctor’s waiting room

Goal: Simulate the queuing behavior at a doctor’s office.

Assumptions:
1. Patients arrive on the minutes between 9:00 am and 11:59 am.
2. At most one patient arrives during any minute.
3. The probability that a patient arrives in any one minute is 0.075.
4. Each patient needs to meet with the doctor for 15 minutes.

Expectations:
1. How many patients does the doctor expect to see in the day?
2. How much time does the doctor expect to spend with patients?
Simulating a doctor’s waiting room

How do we simulate the arrival of patients?

Assumptions:

1. Patients arrive on the minutes between 9:00 am and 11:59 am.
2. At most one patient arrives during any minute.
3. The probability that a patient arrives in any one minute is 0.075.

We let i be the counter for time. $i = 0$ occurs at time 9:00 am. $i = ___$ occurs at time 11:59 am.
Simulating a doctor’s waiting room

How do we simulate the arrival of patients?

Assumptions:

1. Patients arrive on the minutes between 9:00 am and 11:59 am.
2. At most one patient arrives during any minute.
3. The probability that a patient arrives in any one minute is 0.075.

We let \(i \) be the counter for time. \(i = 0 \) occurs at time 9:00 am.
\[i = ___ \] occurs at time 11:59 am.

We set up a For loop:

\[
\text{For} [i = 0, i ___, i __, \]
\[
\text{newPatient} = \text{If}[\text{RandomReal[]} \leq 0.075, 1, 0] \]
\]
Dealing with the waiting

How do we simulate “waiting” in a “waiting room”?

An arriving patient will wait when _________________________.
Dealing with the waiting

How do we simulate “waiting” in a “waiting room”?
An arriving patient will wait when ________________________________.

We will keep track of the following variables:

- \(n_{\text{wait}} \) = The number of patients waiting.
- \(\text{endTime} \) = The time when the current patient finishes with the doctor.
- \(\text{busy} \) = \(\begin{cases} 1 \text{ if the doctor is busy} \\ 0 \text{ if the doctor is free} \end{cases} \)
Simulating a doctor’s waiting room

Now translate the flowchart into an algorithm:

Pseudocode:

- Zero out the counters.
- For i from 0 up to 180,
 - If the doctor is finishing with a patient at time i, then set busy=0.
 - Determine if a new patient arrives (random, probability 0.075). If so, set newPatient to 1; otherwise set newPatient to 0.
 - If newPatient == 1, add one to the number waiting (nwait++)
Simulating a doctor’s waiting room

Now translate the flowchart into an algorithm:

Pseudocode:

- Zero out the counters.
- For i from 0 up to 180,
 - If the doctor is finishing with a patient at time i, then set busy=0.
 - Determine if a new patient arrives (random, probability 0.075). If so, set `newPatient` to 1; otherwise set `newPatient` to 0.
 - If `newPatient == 1`, add one to the number waiting ($nwait++$)
 - If the doctor is not busy AND there is a patient waiting,
 - Subtract one from the number waiting ($nwait--$)
 - Set the doctor to be busy ($busy = 1$)
 - Set the time when the doctor is not busy ($endTime = i + 15$).
Dealing with the waiting

\[n_{\text{wait}} = 0; \text{busy} = 0; \text{endTime} = 0; \]

For \(i = 0, i < 180, i++ , \)

\[\text{If}[\text{endTime} == i, \text{busy} = 0]; \]
newPatient = If[RandomReal[] <= 0.075, 1, 0];
If[newPatient == 1, nwait++];
If[busy == 0 && nwait > 0,

\[\begin{align*}
\text{nwait} & \text{--;} \text{busy} = 1; \text{endTime} = i + 15; \\
\end{align*}
\]

\]

- For \(i \) from 0 up to 180,

 - If the doctor is finishing with a patient at time \(i \), then set \text{busy}=0.

 - Determine if a new patient arrives (random, probability 0.075). If so, set \text{newPatient} to 1; otherwise set \text{newPatient} to 0.

 - If \text{newPatient} == 1, add one to the number waiting (\text{nwait}++)

 - If the doctor is not busy AND there is a patient waiting,

 - Subtract one from the number waiting (\text{nwait}--)

 - Set the doctor to be busy (\text{busy} = 1)

 - Set the time when the doctor is not busy to \(i + 15 \).
What does the simulation tell us?

We did the simulation, but what was the point?

- How much of the day will the doctor be busy?
- What is the average number of patients in the waiting room?
- How many people are in the waiting room at noon?
- How late will the doctor stay after noon?
What does the simulation tell us?

We did the simulation, but what was the point?

- How much of the day will the doctor be busy?
- What is the average number of patients in the waiting room?
- How many people are in the waiting room at noon?
- How late will the doctor stay after noon?

What statistics do we need to keep track of to answer these questions?

This is just one instance; the power of simulation comes from running the model many times and understanding the average behavior.
Gathering data

How many people are in the waiting room at noon?

```plaintext
nwait = 0; busy = 0; endTime = 0;
For[i = 0, i < 180, i++,
    If[endTime == i, busy = 0];
    newPatient = If[RandomReal[] <= 0.075, 1, 0];
    If[newPatient == 1, nwait++];
    If[baby == 0 && nwait > 0,
        nwait--; busy = 1; endTime = i + 15];
];
```

`nwait ← [Outputs the value after the loop ends.]`
Running many trials

How many people are in the waiting room at noon?

Simulate 1000 times using a Table command, generate a histogram.

```math
trials = Table[
  nwait = 0; busy = 0; endTime = 0;
  For[i = 0, i < 180, i++,
    If[endTime == i, busy = 0];
    newPatient = If[RandomReal[] <= 0.075, 1, 0];
    If[newPatient == 1, nwait++];
    If[busy == 0 && nwait > 0,
      nwait--; busy = 1; endTime = i + 15];
  ];
  nwait
], {j, 1000}
Mean[trials] ← [Average: 3.105]
Histogram[trials]
```
Gathering data

- How late will the doctor stay after noon?

```plaintext
nwait = 0; busy = 0; endTime = 0;
For[i = 0, i < 180, i++,
    If[endTime == i, busy = 0];
    newPatient = If[RandomReal[] <= 0.075, 1, 0];
    If[newPatient == 1, nwait++];
    If[busy == 0 && nwait > 0,
        nwait--; busy = 1; endTime = i + 15];
];
*****
```

↑ [How to calculate how long the doctor has to stay after noon?]

Mean: 51 minutes (does this make sense?)
Gathering data

How late will the doctor stay after noon?

```plaintext
nwait = 0; busy = 0; endTime = 0;
For[i = 0, i < 180, i++,
    If[endTime == i, busy = 0];
    newPatient = If[RandomReal[] <= 0.075, 1, 0];
    If[newPatient == 1, nwait++];
    If[busy == 0 && nwait > 0,
        nwait--; busy = 1; endTime = i + 15];
]
If[busy == 0, 0, endTime + 15 * nwait]
```

↑ [How to calculate how long the doctor has to stay after noon?]

Mean: 51 minutes (does this make sense?)
Gathering and plotting time-dependent data

How much of the day will the doctor will be busy?

Keep track of if the doctor is busy by using a variable `isBusy`.

```plaintext
nwait = 0; busy = 0; endTime = 0;
For[i = 0, i < 180, i++,
    If[endTime == i, busy = 0];
    newPatient = If[RandomReal[] <= 0.075, 1, 0];
    If[newPatient == 1, nwait++];
    If[baby == 0 && nwait > 0,
        nwait--; busy = 1; endTime = i + 15];
    isBusy[i]=busy; ←− [this copies busy into isBusy[i].]
]; ↓ [Puts data into a list.]
busyList=Table[isBusy[i],i,0,179]
Total[busyList] ←− [Total time busy.]
ListLinePlot[busyList]
```
Gathering and plotting time-dependent data

What is the average number of patients in the waiting room?

Keep track of number of waiting patients by using a variable `numWait`.

```plaintext
nwait = 0; busy = 0; endTime = 0;
For[i = 0, i < 180, i++,
    If[endTime == i, busy = 0];
    newPatient = If[RandomReal[] <= 0.075, 1, 0];
    If[newPatient == 1, nwait++];
    If[busy == 0 && nwait > 0,
        nwait--; busy = 1; endTime = i + 15];
    numWait[i]=nwait;  // this copies nwait into numWait[i].]
];  // Puts data into a list.
waitList=Table[numWait[i],i,0,179]
m=Mean[waitList]  // Average patients.
p1=ListLinePlot[waitList];
p2=Plot[m,x,0,179];
Show[p1,p2]
```