MATH 634, Spring 2014

Homework 13

to be prepared for presentation at 5:00pm on Monday, April 7 .
Background reading: Pearls in Graph Theory, Sections 8.1-8.3, 9.1, 9.2, and 10.1.
13-1. Find and prove an "Euler's formula" for disconnected planar graphs.
13-2. This question has to do with planar duality:
(a) Show that for all n, the wheel graph W_{n} is self-dual.
(b) Find a graph that has two non-isomorphic planar duals.
[Hint: Look for different planar embeddings.]
13-3. Prove that the graph G in Figure 9.1 .18 (p. 189) is non-planar using two methods:
(a) Find a subdivision of $K_{3,3}$ or K_{5} that is a subgraph of G.
(b) Through a series of edge deletions and edge contractions, show that either $K_{3,3}$ or K_{5} is a minor of G.

13-4. Show that the Petersen graph is a minor of this graph:

13-5. 9.1.1ab
13-6. (a) Show that $\theta\left(K_{7}\right)=2$.
(b) Show that $\operatorname{genus}\left(K_{6}\right)=2$

