MATH 634, Spring 2014

Homework 8

to be prepared for presentation at 5:00pm on Monday, March 3 .
Background reading: Pearls in Graph Theory, Sections 2.1 through 3.1.
8-1. (a) Suppose that P and Q are two maximum paths in a connected graph G. (That is, no other path in G has longer length.) Prove that P and Q must share a common vertex.
(b) Suppose that P and Q are two maximal paths in a connected graph G. (That is, neither is contained in any longer path.) Show that P and Q might not share a common vertex.

8-2. (a) Find a graph E which has an Eulerian circuit but no Hamiltonian cycle.
(b) Find a graph H which has a Hamiltonian cycle but no Eulerian circuit.
[If either is impossible, prove why you can not find such a graph.]
8-3. Which of the graphs in Figure 1.2.5 are Hamiltonian?
8-4. (a) Prove that there is no closed knight's tour on the 3×8 grid, without simply citing the theorem from class.
(b) Find a closed knight's tour on the 3×5 torus.

8-5. Is is possible to decompose W_{n} into two spanning trees? Prove your answer.

