Definition. (pp. 20,34) Let G be a graph. A subgraph H is spanning if H contains all of G 's vertices.

Definition. (pp. 20,34) Let G be a graph. A subgraph H is spanning if H contains all of G 's vertices.

If H is spanning and also a tree, H is called a **spanning tree**.

Definition. (pp. 20,34) Let G be a graph. A subgraph H is spanning if H contains all of G 's vertices.

- If H is spanning and also a tree, H is called a **spanning tree**.
- If H is spanning and also r-regular, then H is called an r-factor. A 1-factor is also called a perfect matching.

Definition. (pp. 20,34) Let G be a graph. A subgraph H is spanning if H contains all of G 's vertices.

- If H is spanning and also a tree, H is called a **spanning tree**.
- If H is spanning and also r-regular, then H is called an r-factor. A 1-factor is also called a perfect matching. For a graph G to have a perfect matching, \equiv

Definition. (pp. 20,34) Let G be a graph. A subgraph H is spanning if H contains all of G 's vertices.

- If H is spanning and also a tree, H is called a **spanning tree**.
- If H is spanning and also r-regular, then H is called an r-factor. A 1-factor is also called a perfect matching. For a graph G to have a perfect matching, \equiv

Definition. A decomposition of a graph G is a set of subgraphs H_1, \ldots, H_k that partition of the edges of G. That is, for all i and j,

$$
\bigcup_{1 \leq i \leq k} H_i = G \text{ and } E(H_i) \cap E(H_j) = \emptyset.
$$

Definition. (pp. 20,34) Let G be a graph. A subgraph H is spanning if H contains all of G 's vertices.

- If H is spanning and also a tree, H is called a **spanning tree**.
- If H is spanning and also r-regular, then H is called an r-factor. A 1-factor is also called a perfect matching. For a graph G to have a perfect matching, \equiv

Definition. A **decomposition** of a graph G is a set of subgraphs H_1, \ldots, H_k that partition of the edges of G. That is, for all i and j,

$$
\bigcup_{1 \leq i \leq k} H_i = G \text{ and } E(H_i) \cap E(H_j) = \emptyset.
$$

Definition. An H-decomposition is a decomposition of G such that each subgraph H_i in the decomposition is isomorphic to H_\cdot

Definition. A perfect matching decomposition is a decomposition such that each subgraph H_i in the decomposition is a perfect matching.

Definition. A **perfect matching decomposition** is a decomposition such that each subgraph H_i in the decomposition is a perfect matching.

Theorem: For a k-regular graph G, G has a perfect matching decomposition if and only if $\chi'(G) = k$.

Definition. A **perfect matching decomposition** is a decomposition such that each subgraph H_i in the decomposition is a perfect matching.

Theorem: For a k-regular graph G, G has a perfect matching decomposition if and only if $\chi'(G) = k$.

Proof:

There exists a decomposition of G into a set of k perfect matchings. \mathcal{L} There exists a coloring of the edges of G where each vertex is incident to edges of each of k different colors.

Definition. A **perfect matching decomposition** is a decomposition such that each subgraph H_i in the decomposition is a perfect matching.

Theorem: For a k-regular graph G, G has a perfect matching decomposition if and only if $\chi'(G) = k$.

Proof:

There exists a decomposition of G into a set of k perfect matchings. \mathcal{L} There exists a coloring of the edges of G where each vertex is incident to edges of each of k different colors.

$$
\mathop{\Downarrow}\limits^{\textcircled{\tiny{\textcircled{\tiny \dag}}}}_{\textstyle\chi'(\textsf{G})\text{ = } \textsf{k}}
$$

Definition. A **perfect matching decomposition** is a decomposition such that each subgraph H_i in the decomposition is a perfect matching.

Theorem: For a k-regular graph G, G has a perfect matching decomposition if and only if $\chi'(G) = k$.

Proof:

There exists a decomposition of G into a set of k perfect matchings. \mathcal{L} There exists a coloring of the edges of G where each vertex is incident to edges of each of k different colors.

$$
\mathop{\Downarrow}\limits^{\textcircled{\tiny{\textcircled{\tiny \dag}}}}_{\textstyle\chi'(\textsf{G})\text{ = } \textsf{k}}
$$

Corollary: K_{2n+1} has a perfect matching decomposition. Corollary: A snark has no perfect matching decomposition.

Definition. A **Hamiltonian cycle** C in a graph G is a cycle containing every vertex of G.

Definition. A **Hamiltonian path** P in a graph G is a path containing every vertex of G.

Definition. A **Hamiltonian cycle** C in a graph G is a cycle containing every vertex of G.

Definition. A **Hamiltonian path** P in a graph G is a path containing every vertex of G.

Theorem: If G has a Ham'n cycle, then G has a Ham'n path. Proof:

Definition. A **Hamiltonian cycle** C in a graph G is a cycle containing every vertex of G.

Definition. A **Hamiltonian path** P in a graph G is a path containing every vertex of G.

Theorem: If G has a Ham'n cycle, then G has a Ham'n path. Proof:

An arbitrary graph may or may not contain a Hamiltonian cycle/path. This is very hard to determine in general!

 \star Important: Paths and cycles do not use any vertex or edge twice. \star

Theorem 2.3.5: A snark has no Hamiltonian cycle.

Theorem 2.3.5: A snark has no Hamiltonian cycle.

Fact: A snark has an even number of vertices.

Proof: Suppose that a graph G is a snark and contains a Hamiltonian cycle.

That is, G contains C , visiting each vertex once.

Theorem 2.3.5: A snark has no Hamiltonian cycle.

Fact: A snark has an even number of vertices.

Proof: Suppose that a graph G is a snark and contains a Hamiltonian cycle.

That is, G contains C, visiting each vertex once. Remove the edges of C ; what remains?

Theorem 2.3.5: A snark has no Hamiltonian cycle.

Fact: A snark has an even number of vertices.

Proof: Suppose that a graph G is a snark and contains a Hamiltonian cycle.

That is, G contains C, visiting each vertex once. Remove the edges of C; what remains?

Consider the coloring of G where the remaining edges are colored yellow and the edges in the cycle are colored alternating between blue and red. This is a proper 3-edge-coloring of G, a contradiction.

Theorem 2.3.5: A snark has no Hamiltonian cycle.

Fact: A snark has an even number of vertices.

Proof: Suppose that a graph G is a snark and contains a Hamiltonian cycle.

That is, G contains C, visiting each vertex once. Remove the edges of C ; what remains?

Consider the coloring of G where the remaining edges are colored yellow and the edges in the cycle are colored alternating between blue and red. This is a proper 3-edge-coloring of G, a contradiction.

The converse is not true!

Example: Book Figure 2.3.4.

Definition. A cycle decomposition is a decomposition such that each subgraph H_i in the decomposition is a cycle.

Definition. A cycle decomposition is a decomposition such that each subgraph H_i in the decomposition is a cycle.

Theorem: Let G be a graph that has a cycle decomposition. Then every vertex of G has even degree.

Definition. A cycle decomposition is a decomposition such that each subgraph H_i in the decomposition is a cycle.

Theorem: Let G be a graph that has a cycle decomposition. Then every vertex of G has even degree.

Proof: In the cycle decomposition, each cycle H_i contributes two to the degree of each of its vertices. For a vertex v in G , its degree is the sum of its degree over all subgraphs H_i , which must be even.

Definition. A cycle decomposition is a decomposition such that each subgraph H_i in the decomposition is a cycle.

Theorem: Let G be a graph that has a cycle decomposition. Then every vertex of G has even degree.

Proof: In the cycle decomposition, each cycle H_i contributes two to the degree of each of its vertices. For a vertex v in G , its degree is the sum of its degree over all subgraphs H_i , which must be even.

Definition. A Hamiltonian cycle decomposition is a decomposition such that each subgraph H_i is a Hamiltonian cycle.

Question: Which graphs have a Hamiltonian cycle decomposition? Which complete graphs?

Example: K_7 has a Hamiltonian cycle decomposition.

Example: K_7 has a Hamiltonian cycle decomposition.

Example: K_7 has a Hamiltonian cycle decomposition.

However: This construction does not work with K_9 .

Theorem 2.3.1: K_{2n+1} has a Hamiltonian cycle decomposition.

Proof: This proof uses another instance of a "turning trick". Place vertices through $2n$ in a circle and draw a zigzag path visiting all the vertices in the circle. *x*

Theorem 2.3.1: K_{2n+1} has a Hamiltonian cycle decomposition.

Proof: This proof uses another instance of a "turning trick". Place vertices 0 through 2n in a circle and draw a zigzag path visiting all the vertices in the circle. Connect the ends of the path to vertex x to form a Ham. cycle. *x*

Theorem 2.3.1: K_{2n+1} has a Hamiltonian cycle decomposition.

Proof: This proof uses another instance of a "turning trick". Place vertices 0 through 2n in a circle and draw a zigzag path visiting all the vertices in the circle. Connect the ends of the path to vertex x to form a Ham. cycle. As you rotate the zigzag path n times, you visit each edge of K_{2n+1} once to form a Ham'n cycle decomposition. *x x*

Theorem 2.3.1: K_{2n+1} has a Hamiltonian cycle decomposition.

Proof: This proof uses another instance of a "turning trick". Place vertices through $2n$ in a circle and draw a zigzag path visiting all the vertices in the circle. Connect the ends of the path to vertex x to form a Ham. cycle. As you rotate the zigzag path n times, you visit each edge of K_{2n+1} once to form a Ham'n cycle decomposition. *x x*

As a corollary:

Theorem 2.3.3: K_{2n} has a Hamiltonian path decomposition.