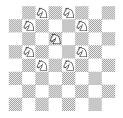
Knight's Tours

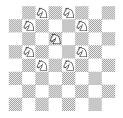
In chess, a knight (a) is a piece that moves in an "L": two spaces over and one space to the side.



Question. Is it possible for a knight to start on some square and, by a series of valid knight moves, visit each square on an 8×8 chessboard once? (How about return to where it started?)

Knight's Tours

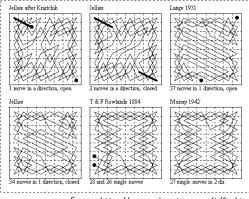
In chess, a knight (a) is a piece that moves in an "L": two spaces over and one space to the side.



Question. Is it possible for a knight to start on some square and, by a series of valid knight moves, visit each square on an 8×8 chessboard once? (How about return to where it started?)

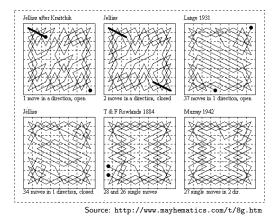
Definition. A path of the first kind is called an **open knight's tour**. A cycle of the second kind is called a **closed knight's tour**.

8×8 Knight's Tour



Source: http://www.mayhematics.com/t/8g.htm

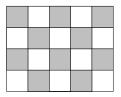
8×8 Knight's Tour

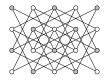


Question. Are there any knight's tours on an $m \times n$ chessboard?

The Graph Theory of Knight's Tours

For any board we can draw a corresponding knight move graph: Create a vertex for every square on the board and create edges between vertices that are a knight's move away.





An open/closed knight's tour on the board

A knight move always alternates between white and black squares. Therefore, a knight move graph is always _____.

Question. Are there any knight's tours on an $m \times n$ chessboard?

Theorem. An $m \times n$ chessboard with $m \le n$ has a *closed* knight's tour unless one or more of these conditions holds:

- 1. *m* and *n* are both odd.
- 2. m = 1, 2, or 4.
- 3. m = 3 and n = 4, 6, or 8.

Theorem. An $m \times n$ chessboard with $m \le n$ has a *closed* knight's tour unless one or more of these conditions holds:

- 1. *m* and *n* are both odd.
- 2. m = 1, 2, or 4.
- 3. m = 3 and n = 4, 6, or 8.

"Proof" We will only show that it is impossible in these cases.

Case 1. When m and n are both odd,

Theorem. An $m \times n$ chessboard with $m \le n$ has a *closed* knight's tour unless one or more of these conditions holds:

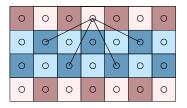
- 1. *m* and *n* are both odd.
- 2. m = 1, 2, or 4.
- 3. m = 3 and n = 4, 6, or 8.

"Proof" We will only show that it is impossible in these cases.

Case 1. When m and n are both odd,

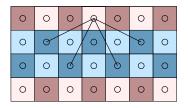
Case 2. When m = 1 or 2, the knight move graph is not connected.

Case 2. When m = 4, draw the knight move graph *G*.



Suppose there exists a Hamiltonian cycle C in the graph G. Since G is bipartite, C alternates between white and black vertices.

Case 2. When m = 4, draw the knight move graph *G*.

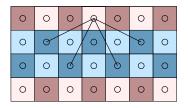


Suppose there exists a Hamiltonian cycle C in the graph G. Since G is bipartite, C alternates between white and black vertices.

Notice that every red vertex in C is adjacent to only blue vertices. And, there are the same number of red and blue vertices.

So, C must alternate between red and blue vertices.

Case 2. When m = 4, draw the knight move graph *G*.

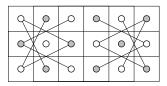


Suppose there exists a Hamiltonian cycle C in the graph G. Since G is bipartite, C alternates between white and black vertices.

Notice that every red vertex in C is adjacent to only blue vertices. And, there are the same number of red and blue vertices.

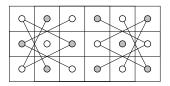
So, C must alternate between red and blue vertices. This means: All vertices of C are "white and red" or "black and blue".

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:



Assume that there is a Hamiltonian cycle C in G.

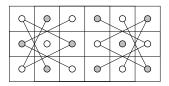
Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:



Assume that there is a Hamiltonian cycle C in G.

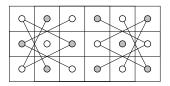
Then, C visits each vertex v and uses two of v's incident edges. If deg(v) = 2, then both of v's incident edges are in C.

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:



Assume that there is a Hamiltonian cycle C in G. Then, C visits each vertex v and uses two of v's incident edges. If deg(v) = 2, then both of v's incident edges are in C. Draw in all these "forced edges" above.

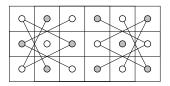
Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:



Assume that there is a Hamiltonian cycle C in G.

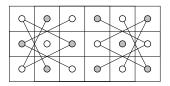
Then, C visits each vertex v and uses two of v's incident edges. If deg(v) = 2, then both of v's incident edges are in C. Draw in all these "forced edges" above. With just these forced edges, there is already a cycle C' of length four.

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:



Assume that there is a Hamiltonian cycle C in G. Then, C visits each vertex v and uses two of v's incident edges. If deg(v) = 2, then both of v's incident edges are in C. Draw in all these "forced edges" above. With just these forced edges, there is already a cycle C' of length four. This cycle C' cannot be a subgraph of any Hamiltonian cycle, contradicting its existence. \Box

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:



Assume that there is a Hamiltonian cycle C in G. Then, C visits each vertex v and uses two of v's incident edges. If deg(v) = 2, then both of v's incident edges are in C. Draw in all these "forced edges" above. With just these forced edges, there is already a cycle C' of length four. This cycle C' cannot be a subgraph of any Hamiltonian cycle, contradicting its existence. \Box

The 3×8 case is similar, and part of your homework.

See also: "Knight's Tours on a Torus", by J. J. Watkins, R. L. Hoenigman