Connectivity

When a graph is disconnected, it does have connected subgraphs.
Definition. A connected component H of G is a maximally connected subgraph.

More precisely,
For every subgraph K such that $H \varsubsetneqq K \subset G, K$ is not connected.
Interpretation: If we try to add any more vertices and/or edges of G into H, the result would be disconnected.

Vertex and edge connectivity

Definitions. Let G be a connected graph.

1. A cut vertex is a vertex v such that $G \backslash v$ is disconnected.
2. A cut set is a set of vertices X such that $G \backslash X$ is disconnected.
3. A bridge is an edge e such that $G \backslash e$ is disconnected.
4. A disconnecting set is a set of edges D such that $G \backslash D$ is disconnected.

- If you delete a bridge from a graph,
- If you delete a cut vertex from a graph,

Vertex and edge connectivity

Definition. The connectivity of G (denoted $\kappa(G)=$ "kappa") is the size of the minimum cut set in G.
We need the convention: $\kappa\left(K_{n}\right)=n-1 \quad$ (incl. $\left.\kappa(\{v\})=0\right)$
$\wedge \kappa(G)=0 \Longleftrightarrow G$ is disconnected or G is a single vertex.

- $\kappa(G) \geq 2 \Longleftrightarrow G$ has no cut vertex.

Definition. The edge connectivity of G (denoted $\left.\kappa^{\prime}(G)\right)$ is the size of the minimum disconnecting set in G.

- $\kappa^{\prime}(G)=0 \Longleftrightarrow G$ is disconnected or G is a single vertex.
- $\kappa^{\prime}(G) \geq 2 \Longleftrightarrow G$ has no bridge.

Fact: For all graphs $G, \kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)$. (\leftarrow min. vtx. degree)

Minimum vs. Minimal

We have just had two definitions related to the concept of "smallest". An important concept is the distinction between minimum and minimal.

Minimum refers to an element of absolute smallest size. (of ALL elts with property, this is smallest.)
Minimal refers to an element of relative smallest size. (for THIS elt with property, no subset has property.)

Example. minimum vs. minimal disconnecting set:

Example. maximum vs. maximal path in a graph:

Girth and diameter

We now discuss additional graph statistics, numerical properties that can be calculated for every graph and can be used to distinguish between non-isomorphic graphs.

Definition. The girth of a graph G, denoted $g(G)$, is the length of the shortest cycle contained in G. If no cycles exist, $g(G)=\infty$.

Definition. Let $x, y \in V(G)$. The distance from x to y, denoted $d(x, y)$, is the length of the shortest path in G from x to y.
If no path exists between x and y, then define $d(x, y)=\infty$.
Definition. The diameter of a graph G, denoted $\operatorname{diam}(G)$, is the maximum distance between any two vertices of G.

* This definition is hard to apply! Calculate a max over a min.

Cliques and independent sets

Definitions

A clique is a set of vertices in G, all of which are adjacent.
An independent set is a set of vertices in G, none of which are adjacent.
A vertex cover is a set of vertices X in G such that X contains (at least) one endpoint of every edge in G.
\star Note: This set of vertices covers the edges of G. 夫

Definitions

The clique number of G, denoted $\omega(G)$ ('omega'), is the size of the largest clique in G.

The independence number of G, denoted $\alpha(G)$ ('alpha'), is the size of the largest independent set of G.

The vertex cover number of G, denoted $\beta(G)$ ('beta'), is the size of the smallest vertex cover of G.

Statistical relationships

Theorems: Let G be a graph and suppose $X \subset V(G)$.

1. X is a clique in $G \Longleftrightarrow X$ is an independent set in G^{c}.
2. X is an independent set in $G \Longleftrightarrow X^{c}$ is a vertex cover in G.
3. For all graphs $G, \alpha(G)+\beta(G)=|V(G)|$.
4. We can bound the chromatic number: $\chi(G) \geq \frac{|V(G)|}{\alpha(G)}$

Recap: Consider the following statistics to tell two graphs apart.

$\|V\|,\|E\|$, deg. seq.	$\Delta(G):$ max vtx deg	$\delta(G):$ min vtx deg
$\chi(G):$ chrom	$\kappa(G):$ vtx connect	$\mathrm{g}(G):$ girth
$\chi^{\prime}(G):$ edge chrom	$\kappa^{\prime}(G)$: edge connect	$\operatorname{diam}(G)$: diameter
$\omega(G):$ clique $\#$	$\alpha(G):$ indep \#	$\beta(G):$ vtx cvr \#

