Connectivity

When a graph is **disconnected**, it does have connected subgraphs. *Definition*. A **connected component** H of G is a maximally connected subgraph.

Connectivity

When a graph is disconnected, it does have connected subgraphs.

Definition. A connected component H of G is a maximally connected subgraph.

More precisely,

For every subgraph K such that $H \subseteq K \subset G$, K is not connected.

Connectivity

When a graph is disconnected, it does have connected subgraphs.

Definition. A connected component H of G is a maximally connected subgraph.

More precisely, For every subgraph K such that $H \subsetneq K \subset G$, K is not connected. Interpretation: If we try to add any more vertices and/or edges of G

into H, the result would be disconnected.

Definitions. Let *G* be a connected graph.

1. A **cut vertex** is a vertex v such that $G \setminus v$ is disconnected.

- 1. A **cut vertex** is a vertex *v* such that $G \setminus v$ is disconnected.
- 2. A **cut set** is a set of vertices X such that $G \setminus X$ is disconnected.

- 1. A **cut vertex** is a vertex v such that $G \setminus v$ is disconnected.
- 2. A **cut set** is a set of vertices X such that $G \setminus X$ is disconnected.
- 3. A **bridge** is an edge e such that $G \setminus e$ is disconnected.
- A disconnecting set is a set of edges D such that G \ D is disconnected.

- 1. A **cut vertex** is a vertex v such that $G \setminus v$ is disconnected.
- 2. A **cut set** is a set of vertices X such that $G \setminus X$ is disconnected.
- 3. A **bridge** is an edge e such that $G \setminus e$ is disconnected.
- A disconnecting set is a set of edges D such that G \ D is disconnected.
- If you delete a bridge from a graph, _____

- 1. A **cut vertex** is a vertex v such that $G \setminus v$ is disconnected.
- 2. A **cut set** is a set of vertices X such that $G \setminus X$ is disconnected.
- 3. A **bridge** is an edge e such that $G \setminus e$ is disconnected.
- A disconnecting set is a set of edges D such that G \ D is disconnected.
- If you delete a bridge from a graph, _____
- If you delete a cut vertex from a graph, _____

Definition. The **connectivity** of *G* (denoted $\kappa(G) =$ "kappa") is the size of the minimum cut set in *G*.

Definition. The **connectivity** of *G* (denoted $\kappa(G) =$ "kappa") is the size of the minimum cut set in *G*.

We need the convention: $\kappa(K_n) = n - 1$ (incl. $\kappa(\{v\}) = 0$)

Definition. The **connectivity** of *G* (denoted $\kappa(G) =$ "kappa") is the size of the minimum cut set in *G*.

We need the convention: $\kappa(K_n) = n - 1$ (incl. $\kappa(\{v\}) = 0$)

• $\kappa(G) = 0 \iff G$ is disconnected or G is a single vertex.

• $\kappa(G) \ge 2 \iff G$ has no cut vertex.

Definition. The **connectivity** of *G* (denoted $\kappa(G) =$ "kappa") is the size of the minimum cut set in *G*.

We need the convention: $\kappa(K_n) = n - 1$ (incl. $\kappa(\{v\}) = 0$)

κ(G) = 0 ⇐→ G is disconnected or G is a single vertex.
 κ(G) ≥ 2 ⇐→ G has no cut vertex.

Definition. The edge connectivity of G (denoted $\kappa'(G)$) is the size of the minimum disconnecting set in G.

Definition. The **connectivity** of *G* (denoted $\kappa(G) =$ "kappa") is the size of the minimum cut set in *G*.

We need the convention: $\kappa(K_n) = n - 1$ (incl. $\kappa(\{v\}) = 0$)

κ(G) = 0 ⇐→ G is disconnected or G is a single vertex.
 κ(G) ≥ 2 ⇐→ G has no cut vertex.

Definition. The edge connectivity of G (denoted $\kappa'(G)$) is the size of the minimum disconnecting set in G.

• $\kappa'(G) = 0 \iff G$ is disconnected or G is a single vertex. • $\kappa'(G) \ge 2 \iff G$ has no bridge.

Definition. The **connectivity** of *G* (denoted $\kappa(G) =$ "kappa") is the size of the minimum cut set in *G*.

We need the convention: $\kappa(K_n) = n - 1$ (incl. $\kappa(\{v\}) = 0$)

κ(G) = 0 ⇐⇒ G is disconnected or G is a single vertex.
 κ(G) ≥ 2 ⇐⇒ G has no cut vertex.

Definition. The edge connectivity of G (denoted $\kappa'(G)$) is the size of the minimum disconnecting set in G.

κ'(G) = 0 ⇐⇒ G is disconnected or G is a single vertex.
 κ'(G) ≥ 2 ⇐⇒ G has no bridge.

Fact: For all graphs G, $\kappa(G) \leq \kappa'(G) \leq \delta(G)$. (\leftarrow min. vtx. degree)

We have just had two definitions related to the concept of "smallest". An important concept is the distinction between minim*um* and minim*al*.

We have just had two definitions related to the concept of "smallest". An important concept is the distinction between minim*um* and minim*al*.

Minimumrefers to an element of <u>absolute</u> smallest size.
(of ALL elts with property, this is smallest.)Minimalrefers to an element of <u>relative</u> smallest size.
(for THIS elt with property, no subset has property.)

We have just had two definitions related to the concept of "smallest". An important concept is the distinction between minim*um* and minim*al*.

Minimumrefers to an element of <u>absolute</u> smallest size.
(of ALL elts with property, this is smallest.)Minimalrefers to an element of <u>relative</u> smallest size.
(for THIS elt with property, no subset has property.)

Example. minimum vs. minimal disconnecting set:

We have just had two definitions related to the concept of "smallest". An important concept is the distinction between minim*um* and minim*al*.

Minimumrefers to an element of <u>absolute</u> smallest size.
(of ALL elts with property, this is smallest.)Minimalrefers to an element of <u>relative</u> smallest size.
(for THIS elt with property, no subset has property.)

Example. minimum vs. minimal disconnecting set:

Example. maximum vs. maximal path in a graph:

We now discuss additional **graph statistics**, numerical properties that can be calculated for every graph and can be used to distinguish between non-isomorphic graphs.

We now discuss additional **graph statistics**, numerical properties that can be calculated for every graph and can be used to distinguish between non-isomorphic graphs.

Definition. The **girth** of a graph *G*, denoted g(G), is the length of the shortest cycle contained in *G*. If no cycles exist, $g(G) = \infty$.

We now discuss additional **graph statistics**, numerical properties that can be calculated for every graph and can be used to distinguish between non-isomorphic graphs.

Definition. The **girth** of a graph *G*, denoted g(G), is the length of the shortest cycle contained in *G*. If no cycles exist, $g(G) = \infty$.

Definition. Let $x, y \in V(G)$. The **distance** from x to y, denoted d(x, y), is the length of the shortest path in G from x to y.

If no path exists between x and y, then define $d(x, y) = \infty$.

We now discuss additional **graph statistics**, numerical properties that can be calculated for every graph and can be used to distinguish between non-isomorphic graphs.

Definition. The **girth** of a graph *G*, denoted g(G), is the length of the shortest cycle contained in *G*. If no cycles exist, $g(G) = \infty$.

Definition. Let $x, y \in V(G)$. The **distance** from x to y, denoted d(x, y), is the length of the shortest path in G from x to y.

If no path exists between x and y, then define $d(x, y) = \infty$.

Definition. The **diameter** of a graph G, denoted diam(G), is the *maximum* distance between any two vertices of G.

We now discuss additional **graph statistics**, numerical properties that can be calculated for every graph and can be used to distinguish between non-isomorphic graphs.

Definition. The **girth** of a graph *G*, denoted g(G), is the length of the shortest cycle contained in *G*. If no cycles exist, $g(G) = \infty$.

Definition. Let $x, y \in V(G)$. The **distance** from x to y, denoted d(x, y), is the length of the shortest path in G from x to y.

If no path exists between x and y, then define $d(x, y) = \infty$.

Definition. The **diameter** of a graph G, denoted diam(G), is the *maximum* distance between any two vertices of G.

★ This definition is hard to apply! Calculate a max over a min. ★

Definitions

A **clique** is a set of vertices in *G*, *all* of which are adjacent.

Definitions

A clique is a set of vertices in G, all of which are adjacent. An independent set is a set of vertices in G, none of which are adjacent.

Definitions

A clique is a set of vertices in G, all of which are adjacent.
An independent set is a set of vertices in G, none of which are adjacent.
A vertex cover is a set of vertices X in G such that X contains (at least) one endpoint of every edge in G.

Definitions

A clique is a set of vertices in G, all of which are adjacent.
An independent set is a set of vertices in G, none of which are adjacent.
A vertex cover is a set of vertices X in G such that X contains (at least) one endpoint of every edge in G.

 \star Note: This set of vertices covers the *edges* of G. \star

Definitions

A clique is a set of vertices in G, all of which are adjacent.
An independent set is a set of vertices in G, none of which are adjacent.
A vertex cover is a set of vertices X in G such that X contains (at least) one endpoint of every edge in G.

 \star Note: This set of vertices covers the edges of G. \star

Definitions

The **clique number** of G, denoted $\omega(G)$ ('omega'), is the size of the largest clique in G.

Definitions

A clique is a set of vertices in G, all of which are adjacent.
An independent set is a set of vertices in G, none of which are adjacent.
A vertex cover is a set of vertices X in G such that X contains (at least) one endpoint of every edge in G.

 \star Note: This set of vertices covers the edges of G. \star

Definitions

The **clique number** of G, denoted $\omega(G)$ ('omega'), is the size of the largest clique in G.

The **independence number** of G, denoted $\alpha(G)$ ('alpha'), is the size of the largest independent set of G.

Definitions

A clique is a set of vertices in G, all of which are adjacent.
An independent set is a set of vertices in G, none of which are adjacent.
A vertex cover is a set of vertices X in G such that X contains (at least) one endpoint of every edge in G.

 \star Note: This set of vertices covers the edges of G. \star

Definitions

The **clique number** of G, denoted $\omega(G)$ ('omega'), is the size of the largest clique in G.

The **independence number** of G, denoted $\alpha(G)$ ('alpha'), is the size of the largest independent set of G.

The vertex cover number of G, denoted $\beta(G)$ ('beta'), is the size of the smallest vertex cover of G.

Theorems: Let G be a graph and suppose $X \subset V(G)$.

1. X is a clique in $G \iff X$ is an independent set in G^c .

Theorems: Let G be a graph and suppose $X \subset V(G)$.

1. X is a clique in $G \iff X$ is an independent set in G^c .

2. X is an independent set in $G \iff X^c$ is a vertex cover in G.

Theorems: Let G be a graph and suppose $X \subset V(G)$.

1. X is a clique in $G \iff X$ is an independent set in G^c .

2. X is an independent set in $G \iff X^c$ is a vertex cover in G.

3. For all graphs G, $\alpha(G) + \beta(G) = |V(G)|$.

Theorems: Let G be a graph and suppose $X \subset V(G)$.

1. X is a clique in $G \iff X$ is an independent set in G^c .

2. X is an independent set in $G \iff X^c$ is a vertex cover in G.

3. For all graphs G, $\alpha(G) + \beta(G) = |V(G)|$.

Theorems: Let G be a graph and suppose $X \subset V(G)$.

1. X is a clique in $G \iff X$ is an independent set in G^c .

2. X is an independent set in $G \iff X^c$ is a vertex cover in G.

3. For all graphs G, $\alpha(G) + \beta(G) = |V(G)|$.

4. We can bound the chromatic number: $\chi(G) \ge \frac{|V(G)|}{\alpha(G)}$

Recap: Consider the following statistics to tell two graphs apart.

V , $ E $, deg. seq.	

Theorems: Let G be a graph and suppose $X \subset V(G)$.

1. X is a clique in $G \iff X$ is an independent set in G^c .

2. X is an independent set in $G \iff X^c$ is a vertex cover in G.

3. For all graphs G, $\alpha(G) + \beta(G) = |V(G)|$.

4. We can bound the chromatic number: $\chi(G) \ge \frac{|V(G)|}{\alpha(G)}$

Recap: Consider the following statistics to tell two graphs apart.

V , $ E $, deg. seq.	$\Delta(G)$: max vtx deg	$\delta(G)$: min vtx deg

Theorems: Let G be a graph and suppose $X \subset V(G)$.

1. X is a clique in $G \iff X$ is an independent set in G^c .

2. X is an independent set in $G \iff X^c$ is a vertex cover in G.

3. For all graphs G, $\alpha(G) + \beta(G) = |V(G)|$.

Recap: Consider the following statistics to tell two graphs apart.

V , $ E $, deg. seq.	$\Delta(G)$: max vtx deg	$\delta(G)$: min vtx deg
$\chi(G)$: chrom		
$\chi'(G)$: edge chrom		

Theorems: Let G be a graph and suppose $X \subset V(G)$.

1. X is a clique in $G \iff X$ is an independent set in G^c .

2. X is an independent set in $G \iff X^c$ is a vertex cover in G.

3. For all graphs G, $\alpha(G) + \beta(G) = |V(G)|$.

Recap: Consider the following statistics to tell two graphs apart.

V , $ E $, deg. seq.	$\Delta(G)$: max vtx deg	$\delta(G)$: min vtx deg
$\chi(G)$: chrom	$\kappa(G)$: vtx connect	
$\chi'(G)$: edge chrom	$\kappa'(G)$: edge connect	

Theorems: Let G be a graph and suppose $X \subset V(G)$.

1. X is a clique in $G \iff X$ is an independent set in G^c .

2. X is an independent set in $G \iff X^c$ is a vertex cover in G.

3. For all graphs G, $\alpha(G) + \beta(G) = |V(G)|$.

Recap: Consider the following statistics to tell two graphs apart.

V , $ E $, deg. seq.	$\Delta(G)$: max vtx deg	$\delta(G)$: min vtx deg
$\chi(G)$: chrom	$\kappa(G)$: vtx connect	g(G): girth
$\chi'(G)$: edge chrom	$\kappa'(G)$: edge connect	diam(G): diameter

Theorems: Let G be a graph and suppose $X \subset V(G)$.

1. X is a clique in $G \iff X$ is an independent set in G^c .

2. X is an independent set in $G \iff X^c$ is a vertex cover in G.

3. For all graphs G, $\alpha(G) + \beta(G) = |V(G)|$.

Recap: Consider the following statistics to tell two graphs apart.

V , $ E $, deg. seq.	$\Delta(G)$: max vtx deg	$\delta(G)$: min vtx deg
$\chi(G)$: chrom	$\kappa(G)$: vtx connect	g(G): girth
$\chi'(G)$: edge chrom	$\kappa'(G)$: edge connect	diam(G): diameter
$\omega(G)$: clique #	$lpha({\sf G})$: indep #	eta(G): vtx cvr $#$