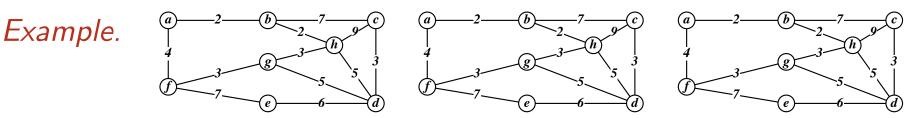
Minimum-weight spanning trees

Motivation: Create a connected network as cheaply as possible.

- ► Think: Setting up electrical grid or road network.
- Some connections are cheaper than others.
- Only need to minimally connect the vertices.

Definition. A weighted graph consists of a graph G = (V, E) and weight function $w : E \to \mathbb{R}$ defined on the edges of G. The weight of a subgraph H of G is the sum of the edges in H.



Definition. For a graph G, a **spanning tree** T is a subgraph of G which is a tree and contains every vertex of G.

Goal: For a weighted graph G, find a minimum-weight spanning tree.

Kruskal's algorithm

Kruskal's Algorithm finds a minimum-weight spanning tree in a weighted graph.

1. Initialization: Order the edges from lowest to highest weight:

$$w(e_1) \leq w(e_2) \leq w(e_3) \leq \cdots \leq w(e_k).$$

- 2. Step 1: Define $T = \{e_1\}$ and grow the tree as follows:
- 3. Step *i*: Determine if adding e_i to T would create a cycle.

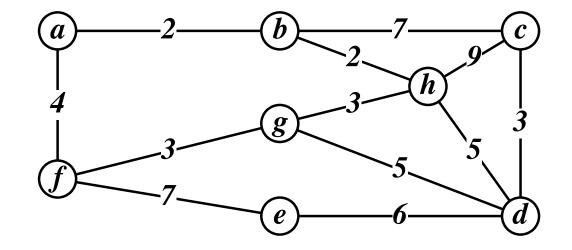
lf not, add e_i to the set T.

If so, do nothing.

If you have a spanning tree, STOP. You have a m.w.s.t. Otherwise, continue onto step i + 1.

Kruskal's algorithm

Example. Run Kruskal's algorithm on the following graph:



Notes on Kruskal's algorithm

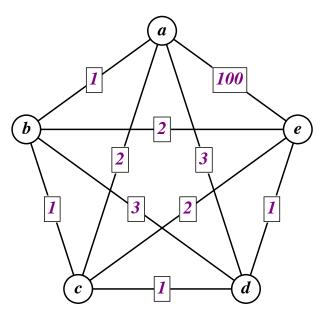
- Proof of correctness similar to homework. Must additionally verify that the spanning tree is indeed minimum-weight.
- Kruskal's algorithm is an example of a greedy algorithm. (It chooses the cheapest edge at each point.)
- Greedy algorithms don't always work.

The traveling salesman problem

Motivation: Visit all nodes and return home as cheaply as possible.

- Least cost trip flying between five major cities.
- Optimal routes for delivering mail, collecting garbage.
- Finding a trip to all buildings on campus, return.

Goal: Find a minimum-weight Hamiltonian cycle in a weighted graph.



We can not use a greedy algorithm to find this **TSP tour**!

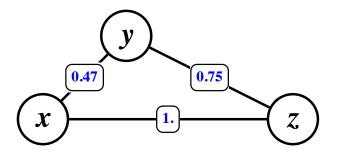
The traveling salesman problem

- ▶ It is *hard* to find an optimum solution.
- ► Goal: Create an easy-to-find *pretty good* solution.

Theorem. When the edge weights satisfy the triangle inequality, the *tree shortcut algorithm* finds a tour that costs at most twice the optimum tour.

Recall. The **triangle inequality** says that if x, y, and z are vertices, then wt(xy) + wt(yz) \leq wt(xz).

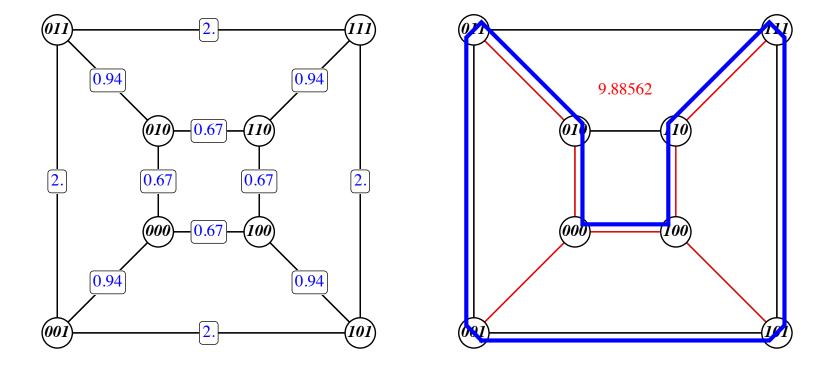
Example. Euclidean distances *Non-example.* Airfares



Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

- 1. Find a minimum-weight spanning tree (Use Kruskal's Algorithm)
- 2. Walk in a circuit around the edges of the tree.
- 3. Take shortcuts to find a tour.



Proof of theorem

Theorem. When the edge weights satisfy the triangle inequality, the *tree shortcut algorithm* finds a tour that costs at most twice the optimum tour.

Proof. Define:

- ► *TSP*_A: TSP tour from shortcutting spanning tree
- ► *CIRC_A*: Circuit constructed by doubling spanning tree
- ► *MST*: Minimum-weight spanning tree
- ► *TSP**: Minimum-weight TSP tour

Then,

 $\operatorname{wt}(\operatorname{TSP}_{A}) \leq \operatorname{wt}(\operatorname{CIRC}_{A}) = 2\operatorname{wt}(\operatorname{MST}) \leq 2\operatorname{wt}(\operatorname{TSP}^{*}).$