Spanning Trees — §7.1

Minimum-weight spanning trees
Motivation: Create a connected network as cheaply as possible.

» Think: Setting up electrical grid or road network.
» Some connections are cheaper than others.

» Only need to minimally connect the vertices.
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Minimum-weight spanning trees
Motivation: Create a connected network as cheaply as possible.
» Think: Setting up electrical grid or road network.

» Some connections are cheaper than others.

» Only need to minimally connect the vertices.

Definition. A weighted graph consists of a graph G = (V, E) and
weight function w : E — R defined on the edges of G.
The weight of a subgraph H of G is the sum of the edges in H.
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Definition. For a graph G, a spanning tree T is a subgraph of G
which is a tree and contains every vertex of G.

Goal: For a weighted graph G, find a minimum-weight spanning tree.
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Kruskal's algorithm

Kruskal’s Algorithm finds a minimum-weight spanning tree in a
weighted graph.

1. Initialization: Order the edges from lowest to highest weight:

w(er) < w(ex) < w(es) < -+ < w(ek).
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» If not, add ¢; to the set T.
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Kruskal's algorithm

Kruskal’s Algorithm finds a minimum-weight spanning tree in a
weighted graph.

1. Initialization: Order the edges from lowest to highest weight:

w(er) < w(ex) < w(es) < -+ < w(ek).

2. Step 1: Define T = {e1} and grow the tree as follows:
3. Step i: Determine if adding e; to T would create a cycle.
» If not, add ¢; to the set T.
» If so, do nothing.
If you have a spanning tree, STOP. You have a m.w.s.t.
Otherwise, continue onto step 7 + 1.
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Kruskal's algorithm

Example. Run Kruskal's algorithm on the following graph:
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Example. Run Kruskal's algorithm on the following graph:
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Kruskal's algorithm

Example. Run Kruskal's algorithm on the following graph:
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Example. Run Kruskal's algorithm on the following graph:
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Kruskal's algorithm

Example. Run Kruskal's algorithm on the following graph:
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Notes on Kruskal's algorithm

» Proof of correctness similar to homework. Must additionally
verify that the spanning tree is indeed minimum-weight.
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Notes on Kruskal's algorithm

» Proof of correctness similar to homework. Must additionally
verify that the spanning tree is indeed minimum-weight.

» Kruskal's algorithm is an example of a greedy algorithm.
(It chooses the cheapest edge at each point.)

» Greedy algorithms don't always work.
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The traveling salesman problem

Motivation: Visit all nodes and return home as cheaply as possible.
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The traveling salesman problem

Motivation: Visit all nodes and return home as cheaply as possible.

» Least cost trip flying between five major cities.
» Optimal routes for delivering mail, collecting garbage.
» Finding a trip to all buildings on campus, return.

Goal: Find a minimum-weight Hamiltonian cycle in a weighted graph.

We can not use a greedy algorithm to find this TSP tour!
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The traveling salesman problem

» It is hard to find an optimum solution.

148



The Traveling Salesman Problem

The traveling salesman problem

» It is hard to find an optimum solution.

» Goal: Create an easy-to-find pretty good solution.

148



The Traveling Salesman Problem 148

The traveling salesman problem

» It is hard to find an optimum solution.

» Goal: Create an easy-to-find pretty good solution.

Theorem. When the edge weights satisfy the triangle inequality,
the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.

Recall. The triangle inequality says that if x, y, and z are
vertices, then wt(xy) + wt(yz) < wt(xz).
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The traveling salesman problem

» It is hard to find an optimum solution.
» Goal: Create an easy-to-find pretty good solution.
Theorem. When the edge weights satisfy the triangle inequality,

the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.

Recall. The triangle inequality says that if x, y, and z are
vertices, then wt(xy) + wt(yz) < wt(xz).

Example. Euclidean distances

Non-example. Airfares @\
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Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour
1. Find a minimum-weight spanning tree (Use Kruskal's Algorithm)
2. Walk in a circuit around the edges of the tree.
3. Take shortcuts to find a tour.
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Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1. Find a minimum-weight spanning tree (Use Kruskal's Algorithm)
2. Walk in a circuit around the edges of the tree.
3. Take shortcuts to find a tour.
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Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1. Find a minimum-weight spanning tree (Use Kruskal's Algorithm)
2. Walk in a circuit around the edges of the tree.
3. Take shortcuts to find a tour.
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Finding a good TSP-tour

149

The Tree Shortcut Algorithm to find a good TSP-tour

1. Find a minimum-weight spanning tree (Use Kruskal's Algorithm)

2. Walk in a circuit around the edges of the tree.

3. Take shortcuts to find a tour.

@

10.4379

o




The Traveling Salesman Problem 149

Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1. Find a minimum-weight spanning tree (Use Kruskal's Algorithm)
2. Walk in a circuit around the edges of the tree.
3. Take shortcuts to find a tour.




The Traveling Salesman Problem 149

Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1. Find a minimum-weight spanning tree (Use Kruskal's Algorithm)
2. Walk in a circuit around the edges of the tree.
3. Take shortcuts to find a tour.




The Traveling Salesman Problem

Proof of theorem

Theorem. When the edge weights satisfy the triangle inequality,
the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.



The Traveling Salesman Problem

Proof of theorem

Theorem. When the edge weights satisfy the triangle inequality,
the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.
Proof. Define:

» TSPa: TSP tour from shortcutting spanning tree

» CIRCj: Circuit constructed by doubling spanning tree

» MST: Minimum-weight spanning tree

» TSP*: Minimum-weight TSP tour
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Proof of theorem

Theorem. When the edge weights satisfy the triangle inequality,
the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.
Proof. Define:

» TSPa: TSP tour from shortcutting spanning tree

» CIRCj: Circuit constructed by doubling spanning tree

» MST: Minimum-weight spanning tree

» TSP*: Minimum-weight TSP tour

Then,
wt(TSPs) < wt(CIRCy) = 2wt(MST) < 2wt(TSP™).
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