
Matchings — §7.2 106

Algorithms

Definition. An algorithm is a set of rules followed to solve a problem.

In general, an algorithm has the steps: Havel–Hakimi:

1. Organize the input.

2. Repeatedly apply some steps
until a termination condition holds

3. Analyze data upon termination

Computers can be used to run the algorithms once we verify they work.

To verify the correctness of an algorithm:

1. Verify that the algorithm terminates. (often invoking finiteness)

2. Verify that the result satisfies the desired conditions.



Matchings — §7.2 107

Matchings in Graphs

Definition. A matching M in a graph G is a subset of edges of G
that share no vertices.

Definition. A maximal matching M is a matching such that the
inclusion into M of any edge of G \M is no longer a matching.

Definition. A maximum matching is a matching M that has the
most edges possible for the graph G .

Thought Exercise: What is the result of overlapping two matchings?

Recall. A perfect matching is a matching involving every vertex of G .

⋆ We will discuss matchings in a bipartite graph ⋆



Matchings — §7.2 108

Application: Scheduling

Suppose you are working in a group trying to complete all the
problems on the homework. Depending on everyone’s preferences,
you would like to assign each member one problem to do.

A

B

C

D

E

9!1

9!2

9!3

9!4

9!5

Person A likes problems 1, 2, 3, and 5.
Person B likes problems 1, 2, and 4.
Person C likes problems 3, 4, and 5.
Person D likes problems 2 and 3.
Person E likes problems 3 and 4.

Create a graph that models the situation.

Question.
What is a maximum matching for this graph?

We will use an algorithm to answer this question.



Matchings — §7.2 109

Motivating The Hungarian Algorithm

Let us work through the basic idea behind the algorithm.
We start with an initial matching; we might as well make it maximal.
Why is the pictured matching maximal?

A

B

C

D

E

9!1

9!2

9!3

9!4

9!5

Definition. Given a matching M in a graph G ,
an M-alternating path is a path in G that
starts at a vertex not in M, and whose edges
alternate between being in M and not in M.

Example. D → 2 → B → 4 → C
is an M-alternating path.

Definition. An M-augmenting path is an
M-alternating path that begins AND ends at
unmatched vertices.

It is augmenting because we can improve M by toggling the edges
between those in M and those not in M.



Matchings — §7.2 110

Motivating The Hungarian Algorithm

A

B

C

D

E

9!1

9!2

9!3

9!4

9!5

A

B

C

D

E

9!1

9!2

9!3

9!4

9!5

A

B

C

D

E

9!1

9!2

9!3

9!4

9!5

A

B

C

D

E

9!1

9!2

9!3

9!4

9!5

A

B

C

D

E

9!1

9!2

9!3

9!4

9!5

Given M, P = D → 2 → B → 1 is an M-augmenting path.
Toggling the edges in P gives a new matching M ′.

Given M ′, P ′ = E → 4 → C → 3 → A → 5 is an M ′-augmenting
path. Toggling the edges in P ′ gives a new matching M ′′.

The matching M ′′ is maximal. (Why?)



Matchings — §7.2 111

The Hungarian Algorithm

The Hungarian Algorithm (Kuhn, Kőnig, Egeváry) [Finds a
maximum matching in a bipartite graph (w/red and blue vertices)]

1. Start with a bipartite graph G and any matching M.
Label all red vertices eligible (for augmentation).

2. If all red, eligible vertices are matched, stop. Otherwise, there
exists a red, unmatched, eligible vertex to use in the next step.

3. Let v be an unmatched, eligible, red vertex. Start growing all
possible M-alternating paths from v . That is, follow every edge
not in M to a blue vertex. From a matched blue vertex, follow the
edge of M back to a red vertex, and repeat as far as possible.
{

If there is an M-augmenting path, toggle edges to augment M.

If there is no M-augmenting path, mark a ineligible.

Return to Step 2.



Matchings — §7.2 112

Applying the Hungarian Algorithm

Here is something that might happen during an application of the
Hungarian algorithm:

A

B

C

D

E

F

G

H

I

J

Example. There is no M-augmenting path
starting at B in the graph to the right.

We would mark B ineligible and move on to
the next eligible, unmatched red vertex in the
graph (E ).



Matchings — §7.2 113

Proof of Correctness

Claim. The Hungarian Algorithm gives a maximum matching.

Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum matching.

The algorithm terminates. Each time Step 3 is run, one red
vertex either becomes matched or becomes ineligible. Also, no red
vertex that starts matched becomes unmatched. Since there are a
finite number of red vertices, the algorithm must terminate.

The output is a maximum matching. The output M is a
matching inducing no M-augmenting paths in the graph. Suppose
that there were another matching M∗ that used more edges than M.

When we overlap M and M∗, the result is a union of cycles and paths.
At least one path must have more edges from M∗ than M.

This path is an M-augmenting path, contradicting the definition of M.


