## Algorithms

Definition. An algorithm is a set of rules followed to solve a problem. In general, an algorithm has the steps:

1. Organize the input.
2. Repeatedly apply some steps
until a termination condition holds
3. Analyze data upon termination

## Algorithms

Definition. An algorithm is a set of rules followed to solve a problem.
In general, an algorithm has the steps: Havel-Hakimi:

1. Organize the input.
2. Repeatedly apply some steps
until a termination condition holds
3. Analyze data upon termination

## Algorithms

Definition. An algorithm is a set of rules followed to solve a problem.
In general, an algorithm has the steps: Havel-Hakimi:

1. Organize the input.
2. Repeatedly apply some steps
until a termination condition holds
3. Analyze data upon termination

Computers can be used to run the algorithms once we verify they work.

## Algorithms

Definition. An algorithm is a set of rules followed to solve a problem.
In general, an algorithm has the steps: Havel-Hakimi:

1. Organize the input.
2. Repeatedly apply some steps
until a termination condition holds
3. Analyze data upon termination

Computers can be used to run the algorithms once we verify they work.
To verify the correctness of an algorithm:

1. Verify that the algorithm terminates. (often invoking finiteness)
2. Verify that the result satisfies the desired conditions.

## Matchings in Graphs

Definition. A matching $M$ in a graph $G$ is a subset of edges of $G$ that share no vertices.

## Matchings in Graphs

Definition. A matching $M$ in a graph $G$ is a subset of edges of $G$ that share no vertices.

Definition. A maximal matching $M$ is a matching such that the inclusion into $M$ of any edge of $G \backslash M$ is no longer a matching.

Definition. A maximum matching is a matching $M$ that has the most edges possible for the graph $G$.


## Matchings in Graphs

Definition. A matching $M$ in a graph $G$ is a subset of edges of $G$ that share no vertices.

Definition. A maximal matching $M$ is a matching such that the inclusion into $M$ of any edge of $G \backslash M$ is no longer a matching.

Definition. A maximum matching is a matching $M$ that has the most edges possible for the graph $G$.


Thought Exercise: What is the result of overlapping two matchings?

## Matchings in Graphs

Definition. A matching $M$ in a graph $G$ is a subset of edges of $G$ that share no vertices.

Definition. A maximal matching $M$ is a matching such that the inclusion into $M$ of any edge of $G \backslash M$ is no longer a matching.

Definition. A maximum matching is a matching $M$ that has the most edges possible for the graph $G$.


Thought Exercise: What is the result of overlapping two matchings?

Recall. A perfect matching is a matching involving every vertex of $G$.
$\star$ We will discuss matchings in a bipartite graph $\star$

## Application: Scheduling

Suppose you are working in a group trying to complete all the problems on the homework. Depending on everyone's preferences, you would like to assign each member one problem to do.

Person A likes problems 1, 2, 3, and 5.
Person B likes problems 1, 2, and 4.
Person C likes problems 3, 4, and 5.
Person D likes problems 2 and 3 .
Person E likes problems 3 and 4.

## Application: Scheduling

Suppose you are working in a group trying to complete all the problems on the homework. Depending on everyone's preferences, you would like to assign each member one problem to do.
Person A likes problems 1, 2, 3, and 5.
Person B likes problems 1, 2, and 4.
Person C likes problems 3, 4, and 5.
Person D likes problems 2 and 3 .
Person E likes problems 3 and 4.
Create a graph that models the situation.


## Application: Scheduling

Suppose you are working in a group trying to complete all the problems on the homework. Depending on everyone's preferences, you would like to assign each member one problem to do.
Person A likes problems 1, 2, 3, and 5.
Person B likes problems 1, 2, and 4.
Person C likes problems 3, 4, and 5.
Person D likes problems 2 and 3 .
Person E likes problems 3 and 4.
Create a graph that models the situation.
Question.
What is a maximum matching for this graph?
We will use an algorithm to answer this question.


## Motivating The Hungarian Algorithm

Let us work through the basic idea behind the algorithm.
We start with an initial matching; we might as well make it maximal.
Why is the pictured matching maximal?


## Motivating The Hungarian Algorithm

Let us work through the basic idea behind the algorithm.
We start with an initial matching; we might as well make it maximal.
Why is the pictured matching maximal?
Definition. Given a matching $M$ in a graph $G$, an $M$-alternating path is a path in $G$ that starts at a vertex not in $M$, and whose edges alternate between being in $M$ and not in $M$.


## Motivating The Hungarian Algorithm

Let us work through the basic idea behind the algorithm.
We start with an initial matching; we might as well make it maximal.
Why is the pictured matching maximal?
Definition. Given a matching $M$ in a graph $G$, an $M$-alternating path is a path in $G$ that starts at a vertex not in $M$, and whose edges alternate between being in $M$ and not in $M$.
Example. $D \rightarrow 2 \rightarrow B \rightarrow 4 \rightarrow C$ is an $M$-alternating path.


## Motivating The Hungarian Algorithm

Let us work through the basic idea behind the algorithm.
We start with an initial matching; we might as well make it maximal.
Why is the pictured matching maximal?
Definition. Given a matching $M$ in a graph $G$, an $M$-alternating path is a path in $G$ that starts at a vertex not in $M$, and whose edges alternate between being in $M$ and not in $M$.

Example. $D \rightarrow 2 \rightarrow B \rightarrow 4 \rightarrow C$ is an $M$-alternating path.

Definition. An $M$-augmenting path is an $M$-alternating path that begins AND ends at unmatched vertices.


It is augmenting because we can improve $M$ by toggling the edges between those in $M$ and those not in $M$.

## Motivating The Hungarian Algorithm



## Motivating The Hungarian Algorithm



Given $M, P=D \rightarrow 2 \rightarrow B \rightarrow 1$ is an $M$-augmenting path. Toggling the edges in $P$ gives a new matching $M^{\prime}$.

## Motivating The Hungarian Algorithm



Given $M, P=D \rightarrow 2 \rightarrow B \rightarrow 1$ is an $M$-augmenting path. Toggling the edges in $P$ gives a new matching $M^{\prime}$.

## Motivating The Hungarian Algorithm



Given $M, P=D \rightarrow 2 \rightarrow B \rightarrow 1$ is an $M$-augmenting path.
Toggling the edges in $P$ gives a new matching $M^{\prime}$.
Given $M^{\prime}, P^{\prime}=E \rightarrow 4 \rightarrow C \rightarrow 3 \rightarrow A \rightarrow 5$ is an $M^{\prime}$-augmenting path. Toggling the edges in $P^{\prime}$ gives a new matching $M^{\prime \prime}$.

## Motivating The Hungarian Algorithm



Given $M, P=D \rightarrow 2 \rightarrow B \rightarrow 1$ is an $M$-augmenting path.
Toggling the edges in $P$ gives a new matching $M^{\prime}$.
Given $M^{\prime}, P^{\prime}=E \rightarrow 4 \rightarrow C \rightarrow 3 \rightarrow A \rightarrow 5$ is an $M^{\prime}$-augmenting path. Toggling the edges in $P^{\prime}$ gives a new matching $M^{\prime \prime}$.

The matching $M^{\prime \prime}$ is maximal. (Why?)

## The Hungarian Algorithm

The Hungarian Algorithm (Kuhn, Kőnig, Egeváry) [Finds a maximum matching in a bipartite graph ( $\mathrm{w} /$ red and blue vertices)]

## The Hungarian Algorithm

The Hungarian Algorithm (Kuhn, Kőnig, Egeváry) [Finds a maximum matching in a bipartite graph ( $\mathrm{w} / \mathrm{red}$ and blue vertices)]

1. Start with a bipartite graph $G$ and any matching $M$. Label all red vertices eligible (for augmentation).

## The Hungarian Algorithm

The Hungarian Algorithm (Kuhn, Kőnig, Egeváry) [Finds a maximum matching in a bipartite graph ( $\mathrm{w} / \mathrm{red}$ and blue vertices)]

1. Start with a bipartite graph $G$ and any matching $M$. Label all red vertices eligible (for augmentation).
2. If all red, eligible vertices are matched, stop. Otherwise, there exists a red, unmatched, eligible vertex to use in the next step.

## The Hungarian Algorithm

The Hungarian Algorithm (Kuhn, Kőnig, Egeváry) [Finds a maximum matching in a bipartite graph ( $\mathrm{w} / \mathrm{red}$ and blue vertices)]

1. Start with a bipartite graph $G$ and any matching $M$. Label all red vertices eligible (for augmentation).
2. If all red, eligible vertices are matched, stop. Otherwise, there exists a red, unmatched, eligible vertex to use in the next step.
3. Let $v$ be an unmatched, eligible, red vertex. Start growing all possible $M$-alternating paths from $v$. That is, follow every edge not in $M$ to a blue vertex. From a matched blue vertex, follow the edge of $M$ back to a red vertex, and repeat as far as possible.

## The Hungarian Algorithm

The Hungarian Algorithm (Kuhn, Kőnig, Egeváry) [Finds a maximum matching in a bipartite graph ( $\mathrm{w} / \mathrm{red}$ and blue vertices)]

1. Start with a bipartite graph $G$ and any matching $M$. Label all red vertices eligible (for augmentation).
2. If all red, eligible vertices are matched, stop. Otherwise, there exists a red, unmatched, eligible vertex to use in the next step.
3. Let $v$ be an unmatched, eligible, red vertex. Start growing all possible $M$-alternating paths from $v$. That is, follow every edge not in $M$ to a blue vertex. From a matched blue vertex, follow the edge of $M$ back to a red vertex, and repeat as far as possible.
$\left\{\begin{array}{l}\text { If there is an } M \text {-augmenting path, toggle edges to augment } M \text {. } \\ \text { If there is no } M \text {-augmenting path, mark a ineligible. }\end{array}\right.$

## The Hungarian Algorithm

The Hungarian Algorithm (Kuhn, Kőnig, Egeváry) [Finds a maximum matching in a bipartite graph ( $\mathrm{w} / \mathrm{red}$ and blue vertices)]

1. Start with a bipartite graph $G$ and any matching $M$. Label all red vertices eligible (for augmentation).
2. If all red, eligible vertices are matched, stop. Otherwise, there exists a red, unmatched, eligible vertex to use in the next step.
3. Let $v$ be an unmatched, eligible, red vertex. Start growing all possible $M$-alternating paths from $v$. That is, follow every edge not in $M$ to a blue vertex. From a matched blue vertex, follow the edge of $M$ back to a red vertex, and repeat as far as possible.
$\left\{\begin{array}{l}\text { If there is an } M \text {-augmenting path, toggle edges to augment } M \text {. } \\ \text { If there is no } M \text {-augmenting path, mark a ineligible. }\end{array}\right.$
Return to Step 2.

## Applying the Hungarian Algorithm

Here is something that might happen during an application of the Hungarian algorithm:

Example. There is no $M$-augmenting path starting at $B$ in the graph to the right.

We would mark $B$ ineligible and move on to the next eligible, unmatched red vertex in the graph (E).


## Proof of Correctness

Claim. The Hungarian Algorithm gives a maximum matching. Proof. We must show that the algorithm always stops, and that when it stops, the output is indeed a maximum matching.

The algorithm terminates.

## Proof of Correctness

Claim. The Hungarian Algorithm gives a maximum matching. Proof. We must show that the algorithm always stops, and that when it stops, the output is indeed a maximum matching.

The algorithm terminates. Each time Step 3 is run, one red vertex either becomes matched or becomes ineligible. Also, no red vertex that starts matched becomes unmatched. Since there are a finite number of red vertices, the algorithm must terminate.

## Proof of Correctness

Claim. The Hungarian Algorithm gives a maximum matching. Proof. We must show that the algorithm always stops, and that when it stops, the output is indeed a maximum matching.

The algorithm terminates. Each time Step 3 is run, one red vertex either becomes matched or becomes ineligible. Also, no red vertex that starts matched becomes unmatched. Since there are a finite number of red vertices, the algorithm must terminate.

The output is a maximum matching.

## Proof of Correctness

Claim. The Hungarian Algorithm gives a maximum matching. Proof. We must show that the algorithm always stops, and that when it stops, the output is indeed a maximum matching.

The algorithm terminates. Each time Step 3 is run, one red vertex either becomes matched or becomes ineligible. Also, no red vertex that starts matched becomes unmatched. Since there are a finite number of red vertices, the algorithm must terminate.

The output is a maximum matching. The output $M$ is a matching inducing no $M$-augmenting paths in the graph. Suppose that there were another matching $M^{*}$ that used more edges than $M$.

## Proof of Correctness

Claim. The Hungarian Algorithm gives a maximum matching. Proof. We must show that the algorithm always stops, and that when it stops, the output is indeed a maximum matching.

The algorithm terminates. Each time Step 3 is run, one red vertex either becomes matched or becomes ineligible. Also, no red vertex that starts matched becomes unmatched. Since there are a finite number of red vertices, the algorithm must terminate.

The output is a maximum matching. The output $M$ is a matching inducing no $M$-augmenting paths in the graph. Suppose that there were another matching $M^{*}$ that used more edges than $M$.

When we overlap $M$ and $M^{*}$, the result is a union of cycles and paths. At least one path must have more edges from $M^{*}$ than $M$.

## Proof of Correctness

Claim. The Hungarian Algorithm gives a maximum matching. Proof. We must show that the algorithm always stops, and that when it stops, the output is indeed a maximum matching.

The algorithm terminates. Each time Step 3 is run, one red vertex either becomes matched or becomes ineligible. Also, no red vertex that starts matched becomes unmatched. Since there are a finite number of red vertices, the algorithm must terminate.

The output is a maximum matching. The output $M$ is a matching inducing no $M$-augmenting paths in the graph. Suppose that there were another matching $M^{*}$ that used more edges than $M$.
When we overlap $M$ and $M^{*}$, the result is a union of cycles and paths. At least one path must have more edges from $M^{*}$ than $M$.

This path is an $M$-augmenting path, contradicting the definition of $M$.

