
Network Flow 123

Directed Graphs

Definition. A directed graph (or digraph) is a graph G = (V ,E),
where each edge e = vw is directed from one vertex to another:

e : v → w or e : w → v .

Remark. The edge e : v → w is different from e′ : w → v and a
digraph including both is not considered to have multiple edges.

Definition. The in-degree of a vertex v is the
number of edges directed toward v .
Definition. The out-degree of a vertex v is the
number of edges directed away from v .

Definition. A source s is a vertex with in-degree 0.
Definition. A sink t is a vertex with out-degree 0.

Important. Any path or cycle in a digraph
must respect the direction on each edge.

e1 e2

e3

e5

e4

e6

e7

a

b c

d

e

Network Flow 124

Network Flows

Definition. A network is a directed graph with additional structure:

! There are two distinguished vertices, s (a source) and t (a sink).

! Each edge e has a capacity ce . [Some sort of limit on flow.]

e1

e2

e3

e4
e5

e7

e6 e8
s

a

b

c

d

t
c1!2

c2!3

c3!4

c4!1
c5!3

c7!3

c6!2 c8!4
s

a

b

c

d

t

Idea. Graph networks represent real-world networks such as traffic,
water, communication, etc.

Goal: Send as much “stuff” from s to t while respecting capacities.

Network Flow 125

Network Flows

Definition. Given a network G , a flow ϕ⃗ = {ϕe}e∈E(G) on G is an
assignment of values ϕe to every edge of G satisfying:

! 0 ≤ ϕe ≤ ce for every edge e ∈ E (G).

! The flow respects the capacities.

!

∑

e into v

ϕe =
∑

e out of v

ϕe for every vertex v ∈ V (G) except s or t.

! Obeys “conservation of flow” except at s and t.

c1!2

c2!3

c3!4

c4!1
c5!3

c7!3

c6!2 c8!4
s

a

b

c

d

t
"1!1

"2!3

"3!2

"4!0
"5!3

"7!2

"6!1 "8!2
s

a

b

c

d

t

Definition. When ϕe = ce , we say that e is saturated, or at capacity.

Network Flow 126

Maximum Flow

Theorem. Given a flow ϕ⃗ on a network G , the net flow out of s is

equal to the net flow into t. Symbolically,
∑

e out of s

ϕe =
∑

e into t

ϕe .

Proof. Create a new network G ′ by adding to G an edge
e∞ : t → s with infinite capacity, and place flow

ϕ∞ =
∑

e out of s

ϕe on e∞.

In G ′, flow is now conserved at every vertex except possibly t.
By Kirchhoff’s Global Current Law (Theorem 6.2.2),
flow must be conserved at t as well.

Network Flow 127

Maximum Flow

Definition. The throughput or value

of a flow ϕ⃗ is
∑

e out of s

ϕe , denoted |ϕ⃗|.

Idea: The throughput is the amount
of “stuff” flowing through G .

"1!1

"2!3

"3!2

"4!0
"5!3

"7!2

"6!1 "8!2
s

a

b

c

d

t

c1!2

c2!3

c3!4

c4!1
c5!3

c7!3

c6!2 c8!4
s

a

b

c

d

t

In our example, |ϕ⃗| = .

Goal: For a given network, find the
flow with the largest throughput.

This problem is called maximum flow.

MAX FLOW maximize
over all flows ϕ⃗ on G

|ϕ⃗|

Network Flow 128

st-Cuts

A related problem in network theory has to do with st-cuts.

Definition. Let G be a network. Let X be a set of vertices
containing s and not containing t. An st-cut [X ,X c] is the set of

edges between a vertex in X and a vertex in X c (in either direction).

c1!2

c2!3

c3!4

c4!1
c5!3

c7!3

c6!2 c8!4
s

a

b

c

d

t

X =
X c =
[X ,X c] =
∣

∣[X ,X c]
∣

∣ =

Definition. The capacity of an st-cut, denoted
∣

∣[X ,X c]
∣

∣ is the sum
of the capacities of the edges from a vertex in X to a vertex in X c .

Idea: The capacity of a cut is a limit for how much “stuff” can go
from X to X c .

⋆ Do not subtract the capacities of the edges going the other way. ⋆

Network Flow 129

Max Flow / Min Cut

Goal: For a given network, find the st-cut with the smallest capacity.

This problem is called minimum cut.

MIN CUT minimize
over all cuts [X ,Xc] on G

∣

∣[X ,X c]
∣

∣

The problems Max Flow and Min Cut are related because for any
flow ϕ⃗, the net flow through the edges of any st-cut [X ,X c] is at
most the capacity of [X ,X c]. This proves:

Theorem. For any flow ϕ⃗ and st-cut [X ,X c], |ϕ⃗| ≤
∣

∣[X ,X c]
∣

∣.

Theorem. For any maximum flow ϕ⃗∗ and minimum st-cut [X ∗,X ∗c],

|ϕ⃗∗| ≤
∣

∣[X ,X c]
∣

∣.

So, if there exists a flow ϕ⃗ and st-cut [X ∗,X ∗c] where equality
holds, then ϕ⃗ is a maximum flow and [X ∗,X ∗c] is a minimum cut

Network Flow 130

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm to find a max flow.

Idea: Similar to the Hungarian Algorithm for finding a max matching,
we will augment an existing flow ϕ⃗.

Question. What does it look like to augment a flow?

!1"
c1!2

!3"
c2!3

!2"
c3!4

!0"
c4!1

!3"
c5!3

!2"
c7!3

!1"
c6!2

!2"
c8!4

s

a

b

c

d

t

!1"
c1!2

!3"
c2!3

!2"
c3!4

!0"
c4!1

!3"
c5!3

!2"
c7!3

!1"
c6!2

!2"
c8!4

s

a

b

c

d

t

We can augment in the forward direction when .
We can augment in the backward direction when .

We’ll create a companion graph to keep track of augmenting paths.

Network Flow 131

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm, which finds a max flow.

1. Start with any flow ϕ⃗ on G .

2. Draw the flow companion graph using the underlying graph
! If ϕe = 0, orient the edge e forward only.
! If 0 < ϕe < ce , orient the edge e both forward and backward.
! ϕe = ce , orient the edge e backward only.

3. ⋆ If there is an st-path in the flow companion graph, send as
many units of flow as possible through this path. Repeat Step 2.
⋆ If there is no st-path in the flow companion graph, STOP.
→ Upon STOP, the current flow is a maximum flow. ←
In addition, let X be the set of vertices reachable from s in
the flow companion graph. Then [X ,X c] is a minimum st-cut.

Network Flow 132

A Ford–Fulkerson Algorithm Example
c1!1

c2!2

c3!10

c4!4

c6!2

c7!7
c8!1

c9!2
c5!2

c10!4
c11!5

c15!11
c12!2

c13!2

c16!2

c14!5 c17!1

s

a

b

c

d

e

f

t

1
1
2
2
2
10

0
4

1
2

2
7 0

10
20

2 2
4 0

5

3
110

2

0
2

2
2

0
5

0
1

s

a

b

c

d

e

f

t s

a

b

c

d

e

f

t

s → c → b →

d → t : 2 units
s → c → f →

e → d → t : 2 units

1
1
2
2
6
10

0
4

1
2

4
7 0

10
22

2 2
4 2

5

7
110

2

2
2

2
2

2
5

0
1

s

a

b

c

d

e

f

t s

a

b

c

d

e

f

t

Network Flow 133

A Ford–Fulkerson Algorithm Example
s → c → f → t : 1 unit

s → c → e →

a → d → t : 2 units

1
1
2
2
8
10

0
4

2
2

4
7 0

10
22

2 3
4 3

5

8
111

2

2
2

2
2

2
5

1
1

s

a

b

c

d

e

f

t s

a

b

c

d

e

f

t

1
1
2
2
8
10

0
4

2
2

4
7 0

10
22

2 3
4 3

5

8
111

2

2
2

2
2

2
5

1
1

s

a

b

c

d

e

f

t

c1!1

c2!2

c3!10

c4!4

c6!2

c7!7
c8!1

c9!2
c5!2

c10!4
c11!5

c15!11
c12!2

c13!2

c16!2

c14!5 c17!1

s

a

b

c

d

e

f

t

X = { }, [X ,X c] = { }, and
∣

∣[X ,X c]
∣

∣ = .

Network Flow 134

Correctness of the Ford–Fulkerson Algorithm

Claim. The Ford–Fulkerson Algorithm gives a maximum flow.

Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum flow.

⋆ We will consider the case of integer capacities.

The algorithm terminates.

! Each iteration increases the throughput of the flow by an integer.

! The sum of the capacities on the edges out of s is finite.

The output is a maximum flow. Upon termination:

! There are no flow augmenting paths in the companion graph, so:

! Edges from X to X c are full and edges from X c to X are empty.

! The capacity of [X ,X c] equals the throughput of the flow.

Conclusion. The flow is a max flow and the st-cut is a min cut.

Network Flow 135

Remarks about Ford-Fulkerson

! When using the algorithm, it is important to increase the flow
by as much as possible at each step.

! When the capacities are integers, we always increase the
throughput by integers. The algorithm does work when the
capacities are not integers, but the proof is more involved.

! As presented here, this algorithm may be very slow.

c1!100

c2!100

c3!1

c4!100

c5!100

s

a

b

t

