Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- ▶ Do the edges cross?
- Are there knots in the graph structure?

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- ▶ Do the edges cross?
- ▶ Are there knots in the graph structure?

Definition. A **drawing** of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition. A **drawing** of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- ▶ The curves must be **simple**, which means no self-intersections.
- No two edges can intersect twice. (Mult. edges: Except at endpts)
- ▶ No three edges can intersect at the same point.

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition. A **drawing** of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- ▶ The curves must be **simple**, which means no self-intersections.
- ▶ No two edges can intersect twice. (Mult. edges: Except at endpts)
- ▶ No three edges can intersect at the same point.

Definition. A **plane drawing** of a graph G is a drawing of the graph in the plane with no crossings.

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition. A **drawing** of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- ▶ The curves must be **simple**, which means no self-intersections.
- ▶ No two edges can intersect twice. (Mult. edges: Except at endpts)
- ▶ No three edges can intersect at the same point.

Definition. A **plane drawing** of a graph G is a drawing of the graph in the plane with no crossings.

Definition. A graph G is **planar** if there exists a plane drawing of G. Otherwise, we say G is **nonplanar**.

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition. A **drawing** of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- ▶ The curves must be **simple**, which means no self-intersections.
- No two edges can intersect twice. (Mult. edges: Except at endpts)
- ▶ No three edges can intersect at the same point.

Definition. A **plane drawing** of a graph G is a drawing of the graph in the plane with no crossings.

Definition. A graph G is **planar** if there exists a plane drawing of G. Otherwise, we say G is **nonplanar**.

Example. K_4 is planar because there exists a plane drawing of K_4 .

Vertices, Edges, and Faces

Definition. In a plane drawing, edges divide the plane into **regions**, or **faces**.

There will always be one face with infinite area. This is called the **outside face**.

Vertices, Edges, and Faces

Definition. In a plane drawing, edges divide the plane into **regions**, or **faces**.

There will always be one face with infinite area. This is called the **outside face**.

Notation. Let p = # of vertices, q = # of edges, r = # of regions. Compute the following data:

Graph	р	q	r	
Tetrahedron				
Cube				
Octahedron				
Dodecahedron				
Icosahedron				

In 1750, Euler noticed that

in each of these examples.

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p - q + r = 2.

Proof. (by induction on the number of cycles)

Base Case: If G is a connected graph with no cycles, then G _____

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p - q + r = 2.

Proof. (by induction on the number of cycles)

Base Case: If *G* is a connected graph with no cycles, then *G* _____ Therefore r = ____

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p - q + r = 2.

Proof. (by induction on the number of cycles) **Base Case**: If *G* is a connected graph with no cycles, then *G* ______ Therefore r = -, and we have p - q + r = p - (p - 1) + 1 = 2.

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p - q + r = 2.

Proof. (by induction on the number of cycles)

Base Case: If *G* is a connected graph with no cycles, then *G* ______ Therefore r = -, and we have p - q + r = p - (p - 1) + 1 = 2.

Inductive Hypothesis: Suppose that for all plane drawings with fewer than *k* cycles, we have p - q + r = 2.

Want to show: In a plane drawing of a graph G with k cycles, p - q + r = 2 also holds.

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p - q + r = 2.

Proof. (by induction on the number of cycles)

Base Case: If *G* is a connected graph with no cycles, then *G* ______ Therefore r = -, and we have p - q + r = p - (p - 1) + 1 = 2.

Inductive Hypothesis: Suppose that for all plane drawings with fewer than *k* cycles, we have p - q + r = 2.

Want to show: In a plane drawing of a graph G with k cycles, p - q + r = 2 also holds.

Let C be a cycle in G, and e be an edge of C. We know that e is adjacent to two different regions, one inside C and one outside C.

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p - q + r = 2.

Proof. (by induction on the number of cycles)

Base Case: If *G* is a connected graph with no cycles, then *G* ______ Therefore $r = ___$, and we have p - q + r = p - (p - 1) + 1 = 2.

Inductive Hypothesis: Suppose that for all plane drawings with fewer than *k* cycles, we have p - q + r = 2.

Want to show: In a plane drawing of a graph G with k cycles, p - q + r = 2 also holds.

Let C be a cycle in G, and e be an edge of C. We know that e is adjacent to two different regions, one inside C and one outside C.

Now remove *e*: Define $H = G \setminus e$. Now *H* has fewer cycles than *G*, and one fewer region. The inductive hypothesis holds for *H*, giving:

Maximal Planar Graphs

A graph with "too many" edges isn't planar; how many is too many? *Goal:* Find a numerical characterization of "too many"

Maximal Planar Graphs

A graph with "too many" edges isn't planar; how many is too many?

Goal: Find a numerical characterization of "too many"

Definition. A planar graph is called **maximal planar** if adding an edge between any two non-adjacent vertices results in a non-planar graph.

Example. Octahedron K_4 $K_5 \setminus e$

Maximal Planar Graphs

A graph with "too many" edges isn't planar; how many is too many?

Goal: Find a numerical characterization of "too many"

Definition. A planar graph is called **maximal planar** if adding an edge between any two non-adjacent vertices results in a non-planar graph.

Example. Octahedron K_4 $K_5 \setminus e$

What do we notice about these graphs?

Every face of a maximal planar graph is a triangle! If not,

Every face of a maximal planar graph is a triangle! If not,

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6. *Proof.* Consider any plane drawing of G. Let p = # of vertices, q = # of edges, and r = # of regions. We will count the number of face-edge incidences in two ways:

Every face of a maximal planar graph is a triangle!
If not,

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6. *Proof.* Consider any plane drawing of G. Let p = # of vertices, q = # of edges, and r = # of regions. We will count the number of face-edge incidences in two ways: From a face-centric POV, the number of face-edge incidences is

Every face of a maximal planar graph is a triangle!
If not,

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6. *Proof.* Consider any plane drawing of G. Let p = # of vertices, q = # of edges, and r = # of regions. We will count the number of face-edge incidences in two ways: From a face-centric POV, the number of face-edge incidences is From an edge-centric POV, the number of face-edge incidences is

Every face of a maximal planar graph is a triangle!
If not,

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6. *Proof.* Consider any plane drawing of G. Let p = # of vertices, q = # of edges, and r = # of regions. We will count the number of face-edge incidences in two ways: From a face-centric POV, the number of face-edge incidences is From an edge-centric POV, the number of face-edge incidences is Now substitute into Euler's formula: p - q + (2q/3) = 2, so

Every face of a maximal planar graph is a triangle!
If not,

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6. *Proof.* Consider any plane drawing of G. Let p = # of vertices, q = # of edges, and r = # of regions. We will count the number of face-edge incidences in two ways: From a face-centric POV, the number of face-edge incidences is From an edge-centric POV, the number of face-edge incidences is Now substitute into Euler's formula: p - q + (2q/3) = 2, so

Do we need $p \ge 3$?

Corollary 8.1.3. Every planar graph with $p \ge 3$ vertices has at most 3p - 6 edges.

- ▶ Start with any planar graph *G* with *p* vertices and *q* edges.
- ▶ Add edges to G until it is maximal planar. (with $Q \ge q$ edges.)
- This resulting graph satisfies Q = 3p 6; hence $q \le 3p 6$.

Corollary 8.1.3. Every planar graph with $p \ge 3$ vertices has at most 3p - 6 edges.

- ▶ Start with any planar graph *G* with *p* vertices and *q* edges.
- ▶ Add edges to G until it is maximal planar. (with $Q \ge q$ edges.)
- This resulting graph satisfies Q = 3p 6; hence $q \le 3p 6$.

Theorem 8.1.4. The graph K_5 is not planar.

Proof.

Corollary 8.1.3. Every planar graph with $p \ge 3$ vertices has at most 3p - 6 edges.

- ▶ Start with any planar graph *G* with *p* vertices and *q* edges.
- ▶ Add edges to G until it is maximal planar. (with $Q \ge q$ edges.)
- This resulting graph satisfies Q = 3p 6; hence $q \le 3p 6$.

Theorem 8.1.4. The graph K_5 is not planar.

Proof.

Theorem 8.1.7. Every planar graph has a vertex with degree \leq 5. *Proof.*

Recall: The girth g(G) of a graph G is the smallest cycle size.

Recall: The girth g(G) of a graph G is the smallest cycle size.

*Theorem 8.1.5.** If G is planar with girth ≥ 4 , then $q \leq 2p - 4$.

Recall: The girth g(G) of a graph G is the smallest cycle size.

Theorem 8.1.5.* If G is planar with girth ≥ 4 , then $q \leq 2p - 4$.

Proof. Modify the above proof—instead of 3r = 2q, we know $4r \le 2q$. This implies that

$$2 = p - q + r \le p - q + \frac{2q}{4} = p - \frac{q}{2}.$$

Therefore, $q \leq 2p - 4$.

Recall: The girth g(G) of a graph G is the smallest cycle size.

Theorem 8.1.5.* If G is planar with girth ≥ 4 , then $q \leq 2p - 4$.

Proof. Modify the above proof—instead of 3r = 2q, we know $4r \le 2q$. This implies that

$$2 = p - q + r \le p - q + \frac{2q}{4} = p - \frac{q}{2}$$

Therefore, $q \leq 2p - 4$.

Theorem 8.1.5. If G is planar and bipartite, then $q \le 2p - 4$. Theorem 8.1.6. $K_{3,3}$ is not planar.

Definition. Given a plane drawing of a planar graph G, the **dual** graph D(G) of G is a graph with vertices corresponding to the regions of G. Two vertices in D(G) are connected by an edge each time the two regions share an edge as a border.

Definition. Given a plane drawing of a planar graph G, the **dual** graph D(G) of G is a graph with vertices corresponding to the regions of G. Two vertices in D(G) are connected by an edge each time the two regions share an edge as a border.

The dual graph of a simple graph may not be simple.
Two regions may be adjacent multiple times.

Definition. Given a plane drawing of a planar graph G, the **dual** graph D(G) of G is a graph with vertices corresponding to the regions of G. Two vertices in D(G) are connected by an edge each time the two regions share an edge as a border.

The dual graph of a simple graph may not be simple.
Two regions may be adjacent multiple times.

• G and D(G) have the same number of edges.

Definition. Given a plane drawing of a planar graph G, the **dual graph** D(G) of G is a graph with vertices corresponding to the regions of G. Two vertices in D(G) are connected by an edge each time the two regions share an edge as a border.

The dual graph of a simple graph may not be simple.

Two regions may be adjacent multiple times.

• G and D(G) have the same number of edges.

Definition. A graph G is self-dual if G is isomorphic to D(G).

Maps

Definition. A *map* is a plane drawing of a connected, bridgeless, planar multigraph. If the map is 3-regular, then it is a **normal map**.

Definition. In a map, the regions are called **countries**. Countries may share several edges.

Maps

Definition. A *map* is a plane drawing of a connected, bridgeless, planar multigraph. If the map is 3-regular, then it is a **normal map**.

Definition. In a map, the regions are called **countries**. Countries may share several edges.

Definition. A **proper coloring** of a map is an assignment of colors to each country so that no two adjacent countries are the same color. *Question.* How many colors are necessary to properly color a map?

Proper Map Colorings

Lemma 8.2.2. If M is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proper Map Colorings

Lemma 8.2.2. If M is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proof. Color the regions *R* of *M* as follows:

 $\begin{cases} \text{orange} & \text{if } R \text{ is enclosed in an odd number of curves} \\ \text{blue} & \text{if } R \text{ is enclosed in an even number of curves} \end{cases}$

Proper Map Colorings

Lemma 8.2.2. If M is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proof. Color the regions *R* of *M* as follows:

 $\begin{cases} \text{orange} & \text{if } R \text{ is enclosed in an odd number of curves} \\ \text{blue} & \text{if } R \text{ is enclosed in an even number of curves} \end{cases}$

This is a proper coloring of M. Any two adjacent regions are on opposite sides of a closed curve, so the number of curves in which each is enclosed is off by one.

Lemma 8.2.6. (The Four Color Theorem) Every normal map has a proper coloring by four colors.

Proof. Very hard.

 \star This is the wrong object \star

Lemma 8.2.6. (The Four Color Theorem) Every normal map has a proper coloring by four colors.

Proof. Very hard.

 \star This is the wrong object \star

Theorem. If G is a plane drawing of a maximal planar graph, then its dual graph D(G) is a normal map.

- Every face of G is a triangle \rightsquigarrow
- ▶ G is connected \rightsquigarrow
- ▶ G is planar ~→

Assuming Lemma 8.2.6,

- G is maximal planar \Rightarrow D(G) is a normal map
 - \Rightarrow countries of D(G) 4-colorable
 - \Rightarrow vertices of G 4-colorable
 - $\Rightarrow \chi(G) \leq 4$

This proves:

Theorem 8.2.8. If G is maximal planar, then $\chi(G) \leq 4$.

Assuming Lemma 8.2.6,

- G is maximal planar $\Rightarrow D(G)$ is a normal map \Rightarrow countries of D(G) 4-colorable
 - \Rightarrow vertices of G 4-colorable
 - $\Rightarrow \chi(G) \leq 4$

This proves:

Theorem 8.2.8. If G is maximal planar, then $\chi(G) \leq 4$.

Since every planar graph is a subgraph of a maximal planar graph, Lemma C implies:

Theorem 8.2.9. If G is a planar graph, then $\chi(G) \leq 4$.

Assuming Lemma 8.2.6,

G is maximal planar $\Rightarrow D(G)$ is a normal map \Rightarrow countries of D(G) 4-colorable \Rightarrow vertices of G 4-colorable $\Rightarrow \chi(G) \leq 4$

This proves:

Theorem 8.2.8. If G is maximal planar, then $\chi(G) \leq 4$.

Since every planar graph is a subgraph of a maximal planar graph, Lemma C implies:

Theorem 8.2.9. If G is a planar graph, then $\chi(G) \leq 4$.

★ History ★