Planarity

Up until now, graphs have been completely abstract.
In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Planarity

Up until now, graphs have been completely abstract.
In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition. A drawing of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

Planarity

Up until now, graphs have been completely abstract.
In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition. A drawing of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- The curves must be simple, which means no self-intersections.
- No two edges can intersect twice. (Mult. edges: Except at endpts)
- No three edges can intersect at the same point.

Planarity

Up until now, graphs have been completely abstract.
In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition. A drawing of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- The curves must be simple, which means no self-intersections.
- No two edges can intersect twice. (Mult. edges: Except at endpts)
- No three edges can intersect at the same point.

Definition. A plane drawing of a graph G is a drawing of the graph in the plane with no crossings.

Planarity

Up until now, graphs have been completely abstract.
In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition. A drawing of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- The curves must be simple, which means no self-intersections.
- No two edges can intersect twice. (Mult. edges: Except at endpts)
- No three edges can intersect at the same point.

Definition. A plane drawing of a graph G is a drawing of the graph in the plane with no crossings.
Definition. A graph G is planar if there exists a plane drawing of G. Otherwise, we say G is nonplanar.

Planarity

Up until now, graphs have been completely abstract.
In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition. A drawing of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- The curves must be simple, which means no self-intersections.
- No two edges can intersect twice. (Mult. edges: Except at endpts)
- No three edges can intersect at the same point.

Definition. A plane drawing of a graph G is a drawing of the graph in the plane with no crossings.
Definition. A graph G is planar if there exists a plane drawing of G. Otherwise, we say G is nonplanar.
Example. K_{4} is planar because there exists a plane drawing of K_{4}.

Vertices, Edges, and Faces

Definition. In a plane drawing, edges divide the plane into regions, or faces.

There will always be one face with infinite area.
 This is called the outside face.

Vertices, Edges, and Faces

Definition. In a plane drawing, edges divide the plane into regions, or faces.

There will always be one face with infinite area. This is called the outside face.

Notation. Let $p=\#$ of vertices, $q=\#$ of edges, $r=\#$ of regions.
Compute the following data:

Graph	p	q	r	
Tetrahedron				
Cube				
Octahedron				
Dodecahedron				
Icosahedron				

In 1750, Euler noticed that \qquad in each of these examples.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of $G, p-q+r=2$.
Proof. (by induction on the number of cycles)
Base Case: If G is a connected graph with no cycles, then G

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of $G, p-q+r=2$.
Proof. (by induction on the number of cycles)
Base Case: If G is a connected graph with no cycles, then G \qquad Therefore $r=$ \qquad

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of $G, p-q+r=2$.
Proof. (by induction on the number of cycles)
Base Case: If G is a connected graph with no cycles, then G Therefore $r=\ldots$, and we have $p-q+r=p-(p-1)+1=2$.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of $G, p-q+r=2$.
Proof. (by induction on the number of cycles)
Base Case: If G is a connected graph with no cycles, then G \qquad Therefore $r=$ \qquad , and we have $p-q+r=p-(p-1)+1=2$. Inductive Hypothesis: Suppose that for all plane drawings with fewer than k cycles, we have $p-q+r=2$.
Want to show: In a plane drawing of a graph G with k cycles, $p-q+r=2$ also holds.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of $G, p-q+r=2$.
Proof. (by induction on the number of cycles)
Base Case: If G is a connected graph with no cycles, then G \qquad
Therefore $r=$ \qquad , and we have $p-q+r=p-(p-1)+1=2$.
Inductive Hypothesis: Suppose that for all plane drawings with fewer than k cycles, we have $p-q+r=2$.
Want to show: In a plane drawing of a graph G with k cycles, $p-q+r=2$ also holds.
Let C be a cycle in G, and e be an edge of C. We know that e is adjacent to two different regions, one inside C and one outside C.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of $G, p-q+r=2$.
Proof. (by induction on the number of cycles)
Base Case: If G is a connected graph with no cycles, then G \qquad
Therefore $r=$ \qquad , and we have $p-q+r=p-(p-1)+1=2$.
Inductive Hypothesis: Suppose that for all plane drawings with fewer than k cycles, we have $p-q+r=2$.
Want to show: In a plane drawing of a graph G with k cycles, $p-q+r=2$ also holds.
Let C be a cycle in G, and e be an edge of C. We know that e is adjacent to two different regions, one inside C and one outside C.
Now remove e: Define $H=G \backslash e$. Now H has fewer cycles than G, and one fewer region. The inductive hypothesis holds for H, giving:

Maximal Planar Graphs

A graph with "too many" edges isn't planar; how many is too many?
Goal: Find a numerical characterization of "too many"

Maximal Planar Graphs

A graph with "too many" edges isn't planar; how many is too many?
Goal: Find a numerical characterization of "too many"
Definition. A planar graph is called maximal planar if adding an edge between any two non-adjacent vertices results in a non-planar graph.
Example. Octahedron
K_{4}
$K_{5} \backslash e$

Maximal Planar Graphs

A graph with "too many" edges isn't planar; how many is too many?
Goal: Find a numerical characterization of "too many"
Definition. A planar graph is called maximal planar if adding an edge between any two non-adjacent vertices results in a non-planar graph.
Example. Octahedron
K_{4}
$K_{5} \backslash e$

What do we notice about these graphs?

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Theorem 8.1.2. If G is maximal planar and $p \geq 3$, then $q=3 p-6$.
Proof. Consider any plane drawing of G.
Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We will count the number of face-edge incidences in two ways:

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Theorem 8.1.2. If G is maximal planar and $p \geq 3$, then $q=3 p-6$.
Proof. Consider any plane drawing of G.
Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We will count the number of face-edge incidences in two ways:
From a face-centric POV, the number of face-edge incidences is

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Theorem 8.1.2. If G is maximal planar and $p \geq 3$, then $q=3 p-6$.
Proof. Consider any plane drawing of G.
Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We will count the number of face-edge incidences in two ways:
From a face-centric POV, the number of face-edge incidences is
From an edge-centric POV, the number of face-edge incidences is

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Theorem 8.1.2. If G is maximal planar and $p \geq 3$, then $q=3 p-6$.
Proof. Consider any plane drawing of G.
Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We will count the number of face-edge incidences in two ways:
From a face-centric POV, the number of face-edge incidences is
From an edge-centric POV, the number of face-edge incidences is
Now substitute into Euler's formula: $p-q+(2 q / 3)=2$, so

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Theorem 8.1.2. If G is maximal planar and $p \geq 3$, then $q=3 p-6$.
Proof. Consider any plane drawing of G.
Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We will count the number of face-edge incidences in two ways:
From a face-centric POV, the number of face-edge incidences is
From an edge-centric POV, the number of face-edge incidences is
Now substitute into Euler's formula: $p-q+(2 q / 3)=2$, so

Do we need $p \geq 3$?

Numerical Conditions on Planar Graphs

Corollary 8.1.3. Every planar graph with $p \geq 3$ vertices has at most $3 p-6$ edges.

- Start with any planar graph G with p vertices and q edges.
- Add edges to G until it is maximal planar. (with $Q \geq q$ edges.)
- This resulting graph satisfies $Q=3 p-6$; hence $q \leq 3 p-6$.

Numerical Conditions on Planar Graphs

Corollary 8.1.3. Every planar graph with $p \geq 3$ vertices has at most $3 p-6$ edges.

- Start with any planar graph G with p vertices and q edges.
- Add edges to G until it is maximal planar. (with $Q \geq q$ edges.)
- This resulting graph satisfies $Q=3 p-6$; hence $q \leq 3 p-6$.

Theorem 8.1.4. The graph K_{5} is not planar.
Proof.

Numerical Conditions on Planar Graphs

Corollary 8.1.3. Every planar graph with $p \geq 3$ vertices has at most $3 p-6$ edges.

- Start with any planar graph G with p vertices and q edges.
- Add edges to G until it is maximal planar. (with $Q \geq q$ edges.)
- This resulting graph satisfies $Q=3 p-6$; hence $q \leq 3 p-6$.

Theorem 8.1.4. The graph K_{5} is not planar.
Proof.
Theorem 8.1.7. Every planar graph has a vertex with degree ≤ 5.
Proof.

Numerical Conditions on Planar Graphs

Recall: The girth $g(G)$ of a graph G is the smallest cycle size.

Numerical Conditions on Planar Graphs

Recall: The girth $g(G)$ of a graph G is the smallest cycle size.
Theorem 8.1.5.* If G is planar with girth ≥ 4, then $q \leq 2 p-4$.

Numerical Conditions on Planar Graphs

Recall: The girth $g(G)$ of a graph G is the smallest cycle size.
Theorem 8.1.5.* If G is planar with girth ≥ 4, then $q \leq 2 p-4$.
Proof. Modify the above proof-instead of $3 r=2 q$, we know $4 r \leq 2 q$. This implies that

$$
2=p-q+r \leq p-q+\frac{2 q}{4}=p-\frac{q}{2}
$$

Therefore, $q \leq 2 p-4$.

Numerical Conditions on Planar Graphs

Recall: The girth $g(G)$ of a graph G is the smallest cycle size.
Theorem 8.1.5.* If G is planar with girth ≥ 4, then $q \leq 2 p-4$.
Proof. Modify the above proof-instead of $3 r=2 q$, we know $4 r \leq 2 q$. This implies that

$$
2=p-q+r \leq p-q+\frac{2 q}{4}=p-\frac{q}{2}
$$

Therefore, $q \leq 2 p-4$.
Theorem 8.1.5. If G is planar and bipartite, then $q \leq 2 p-4$.
Theorem 8.1.6. $K_{3,3}$ is not planar.

Dual Graphs

Definition. Given a plane drawing of a planar graph G, the dual graph $D(G)$ of G is a graph with vertices corresponding to the regions of G. Two vertices in $D(G)$ are connected by an edge each time the two regions share an edge as a border.

Dual Graphs

Definition. Given a plane drawing of a planar graph G, the dual graph $D(G)$ of G is a graph with vertices corresponding to the regions of G. Two vertices in $D(G)$ are connected by an edge each time the two regions share an edge as a border.

- The dual graph of a simple graph may not be simple.
- Two regions may be adjacent multiple times.

Dual Graphs

Definition. Given a plane drawing of a planar graph G, the dual graph $D(G)$ of G is a graph with vertices corresponding to the regions of G. Two vertices in $D(G)$ are connected by an edge each time the two regions share an edge as a border.

- The dual graph of a simple graph may not be simple.
- Two regions may be adjacent multiple times.
- G and $D(G)$ have the same number of edges.

Dual Graphs

Definition. Given a plane drawing of a planar graph G, the dual graph $D(G)$ of G is a graph with vertices corresponding to the regions of G. Two vertices in $D(G)$ are connected by an edge each time the two regions share an edge as a border.

- The dual graph of a simple graph may not be simple.
- Two regions may be adjacent multiple times.
- G and $D(G)$ have the same number of edges.

Definition. A graph G is self-dual if G is isomorphic to $D(G)$.

Maps

Definition. A map is a plane drawing of a connected, bridgeless, planar multigraph. If the map is 3 -regular, then it is a normal map.

Definition. In a map, the regions are called countries. Countries may share several edges.

Maps

Definition. A map is a plane drawing of a connected, bridgeless, planar multigraph. If the map is 3 -regular, then it is a normal map.

Definition. In a map, the regions are called countries. Countries may share several edges.

Definition. A proper coloring of a map is an assignment of colors to each country so that no two adjacent countries are the same color.

Question. How many colors are necessary to properly color a map?

Proper Map Colorings

Lemma 8.2.2. If M is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proper Map Colorings

Lemma 8.2.2. If M is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proof. Color the regions R of M as follows:
$\left\{\begin{array}{ll}\text { orange } & \text { if } R \text { is enclosed in an odd number of curves } \\ \text { blue } & \text { if } R \text { is enclosed in an even number of curves }\end{array}\right\}$.

Proper Map Colorings

Lemma 8.2.2. If M is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proof. Color the regions R of M as follows:
$\left\{\begin{array}{ll}\text { orange } & \text { if } R \text { is enclosed in an odd number of curves } \\ \text { blue } & \text { if } R \text { is enclosed in an even number of curves }\end{array}\right\}$.
This is a proper coloring of M. Any two adjacent regions are on opposite sides of a closed curve, so the number of curves in which each is enclosed is off by one.

The Four Color Theorem

Lemma 8.2.6. (The Four Color Theorem)

Every normal map has a proper coloring by four colors.
Proof. Very hard.
\star This is the wrong object \star

The Four Color Theorem

Lemma 8.2.6. (The Four Color Theorem)
Every normal map has a proper coloring by four colors.
Proof. Very hard.
\star This is the wrong object \star
Theorem. If G is a plane drawing of a maximal planar graph, then its dual graph $D(G)$ is a normal map.

- Every face of G is a triangle \rightsquigarrow
- G is connected \rightsquigarrow
- G is planar \rightsquigarrow

The Four Color Theorem

Assuming Lemma 8.2.6,
G is maximal planar $\Rightarrow D(G)$ is a normal map
\Rightarrow countries of $D(G)$ 4-colorable
\Rightarrow vertices of G 4-colorable
$\Rightarrow \quad \chi(G) \leq 4$
This proves:
Theorem 8.2.8. If G is maximal planar, then $\chi(G) \leq 4$.

The Four Color Theorem

Assuming Lemma 8.2.6,
G is maximal planar $\Rightarrow D(G)$ is a normal map
\Rightarrow countries of $D(G) 4$-colorable
\Rightarrow vertices of G 4-colorable
$\Rightarrow \quad \chi(G) \leq 4$

This proves:

Theorem 8.2.8. If G is maximal planar, then $\chi(G) \leq 4$.
Since every planar graph is a subgraph of a maximal planar graph, Lemma C implies:

Theorem 8.2.9. If G is a planar graph, then $\chi(G) \leq 4$.

The Four Color Theorem

Assuming Lemma 8.2.6,
G is maximal planar $\Rightarrow D(G)$ is a normal map
\Rightarrow countries of $D(G) 4$-colorable
\Rightarrow vertices of G 4-colorable
$\Rightarrow \quad \chi(G) \leq 4$

This proves:

Theorem 8.2.8. If G is maximal planar, then $\chi(G) \leq 4$.
Since every planar graph is a subgraph of a maximal planar graph, Lemma C implies:

Theorem 8.2.9. If G is a planar graph, then $\chi(G) \leq 4$.

* History *

