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The crossing number of a graph

Some graphs are almost planar.

◮ If K3,3 didn’t have that last edge, it would be planar!

So we ask: How non-planar is it?
⋆ We will discuss three ways to answer this question.

Definition. The crossing number of a graph G , denoted cr(G ),
is the minimum number of crossings in any simple drawing of G .

◮ So if G is planar, cr(G ) = 0, and if G is non-planar, cr(G ) ≥ 1.

◮ To prove cr(G ) = 1:

◮ Prove G is non-planar (Kuratowski or otherwise) and
◮ Find a drawing of G with only one crossing.

Example.
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The crossing number of K6

Theorem 9.1.4 The crossing number of K6 is 3.

Proof. First, here is a drawing
of K6 with three crossings:

We conclude that cr(K6) ≤ 3.

Claim: No simple drawing of K6 has fewer crossings.

◮ Suppose there exists a drawing of K6 with two crossings.

◮ Both crossings involve four distinct vertices.
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Theorem 9.1.4 The crossing number of K6 is 3.

Proof. First, here is a drawing
of K6 with three crossings:

We conclude that cr(K6) ≤ 3.

Claim: No simple drawing of K6 has fewer crossings.

◮ Suppose there exists a drawing of K6 with two crossings.

◮ Both crossings involve four distinct vertices.

◮ Since K6 has six vertices, there is a vertex v in both crossings.

◮ If we delete v , the resulting graph would have no crossings.



Statistics of Non-planarity — §9.1, 9.2, 10.3 100

The crossing number of K6

Theorem 9.1.4 The crossing number of K6 is 3.

Proof. First, here is a drawing
of K6 with three crossings:

We conclude that cr(K6) ≤ 3.

Claim: No simple drawing of K6 has fewer crossings.

◮ Suppose there exists a drawing of K6 with two crossings.

◮ Both crossings involve four distinct vertices.

◮ Since K6 has six vertices, there is a vertex v in both crossings.

◮ If we delete v , the resulting graph would have no crossings.

◮ This would give a plane drawing of K5, a contradiction!

Therefore, cr(K6) = 3.
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The thickness of a graph

Definition. The thickness of a graph G , denoted θ(G ), is the
smallest number of planar subgraphs into which G can be decomposed.

That is, find the optimal way to partition of the edge set of G into
disjoint subsets, each of which is a planar graph.
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A simple bound on thickness is:

Theorem 9.2.1. If G has p vertices and q edges, then θ(G ) ≥ q
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Theorems about thickness

A simple bound on thickness is:

Theorem 9.2.1. If G has p vertices and q edges, then θ(G ) ≥ q
3p−6 .

Proof. Suppose that G = H1 ∪ H2 ∪ · · · ∪ Hθ(G) is a decomposition
of G into planar subgraphs Hi , with p vertices and qi edges.

We know that each Hi must satisfy qi ≤ 3p − 6. Therefore

q =
∑θ(G)

i=1 qi ≤
∑θ(G)

i=1 (3p − 6) = θ(G )(3p − 6).

Similarly,

Theorem 9.2.2. If G is a graph with girth ≥ 4, then θ(G ) ≥ q
2p−4 .

Fact: θ(Kn) =







⌊

n + 7

6

⌋

n 6= 9, 10

3 n = 9, 10







Proved by Beineke,
Harary, Vasak,
Alekseev, Gonchakov
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The genus of a graph

A planar graph can always be embedded on a sphere.
That is: it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere).
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The genus of a graph

A planar graph can always be embedded on a sphere.
That is: it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere).

What about more complicated surfaces? Like a torus?
Example. We can embed K5 on a torus. (Two ways to see.)

Example. We can even
embed K7 on a torus:
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However, we can’t embed
K8 on a torus. Perhaps
on a surface of genus g?
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The genus of a graph

Definition. The genus of a graph is the smallest g such that G can
be embedded on a surface of genus g with no crossings.

◮ If G is planar, genus(G ) = 0; if G is non-planar, genus(G ) ≥ 1.
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The genus of a graph

Definition. The genus of a graph is the smallest g such that G can
be embedded on a surface of genus g with no crossings.

◮ If G is planar, genus(G ) = 0; if G is non-planar, genus(G ) ≥ 1.

Fact: (Ringel, Youngs, 1968) The genus of a complete graph is

genus(Kn) =

⌈

(n − 3)(n − 4)

12

⌉

Embedding on higher genus surfaces changes Euler’s formula!

Theorem. Let G be a graph of genus g . Suppose you have an
embedding of G on a surface of genus g with no crossings.
If r is the number of regions, then p − q + r = 2− 2g.

Example. In our embedding of K5 on the torus (genus 1):
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Complete graphs

Planarity statistics for complete graphs:

Statistic 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

cr(Kn) 0 1 3 9 18 36 60 100 150 225 ? ? ? ? ?

θ(Kn) 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4

genus(Kn) 0 1 1 1 2 3 4 5 6 8 10 11 13 16 18
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The cases cr(K11) = 100 and cr(K12) = 150 were proved in 2007.
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The cases cr(K11) = 100 and cr(K12) = 150 were proved in 2007.

Theorem. (Zarankiewicz, 1954) There exists a drawing of Km,n with

cr(Km,n) =
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crossings.


	Statistics of Non-planarity — §9.1, 9.2, 10.3

