mmooRREE COUNTING!

Question: In how many ways can we place k objects in n boxes?

Answer: It depends.

- ▶ What do the objects look like?
 - ▶ Do the objects all look the same?
- What do the boxes look like?
 - Do the boxes all look the same?
- ► Are there any restrictions?
 - Is there a size limit?
 - Must there be an object in each box?

Counting distributions

Definition: A distribution is an assignment of objects to recipients.

Certain counting problems can be revisited in this framework:

► What are candidates for objects, boxes?

► View as a function

- ► View as a distribution
- Find the restriction

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none	\leq 1	\geq 1	=1
distinct	distinct				
identical	distinct				
distinct	identical				
identical	identical				

Where do our known answers fit into the table? (Use function view)

- ▶ n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- ▶ n!: Permutations. What about when $n \neq k$?

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	=1	
distinct	distinct					
identical	distinct					
distinct	identical					
identical	identical					

We can also fill in these answers:

• Objects identical, Boxes distinct, ≥ 1 object per box:

▶ Objects identical, Boxes distinct, = 1 object per box:

Distinct objects in indistinguishable boxes

When placing k distinguishable objects into n indistinguishable boxes, what matters? _____

- ► Each object needs to be in some box.
- ▶ No object is in two boxes.

We have rediscovered

So ask "How many set partitions are there of a set with k objects?"

Or even, "How many set partitions are there of k objects into n parts?"

Stirling numbers

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i **non-empty** subsets. Notation: S(k, i) or ${k \atop i} \leftarrow Careful about this order!$

k	${\binom{k}{0}}{\binom{k}{1}}$	${k \\ 2}$	${k \\ 3}$	${k \\ 4}$	${k \\ 5}$	${k \\ 6}$	${k \\ 7}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle:

$$S(k,1) = S(k,k) = 1.$$

 $S(k,2) = 2^{k-1} - 1.$
 $S(k,k-1) = {k \choose 2}.$

Later: Formula for S(k, i).

To fill in the table, find a recurrence for S(k, i):

Ask: In how many ways can we place k objects into i boxes? We'll condition on the placement of element #i:

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none	≤ 1	\geq 1	=1
distinct	distinct	n ^k	$(n)_{k}$		<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical				
identical	identical				

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

(Note that here we have counted onto functions $[k] \rightarrow [n]$.)

How many ways to distribute distinct objects into identical boxes:

- ▶ If there is exactly one item in each box?
- ▶ If there is at most one item in each box?
- ▶ What about with no restrictions? $(n \ge k \rightsquigarrow \text{Bell number } B_k)$

Bell numbers

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$$
.

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

 $B_{k} = \binom{k-1}{0}B_{0} + \binom{k-1}{1}B_{1} + \cdots + \binom{k-1}{k-1}B_{k-1}.$

Proof: How many partitions of $\{1, \ldots, k\}$ are there?

LHS: B_k , obviously.

RHS: Condition on the box containing the last element k: How many partitions of [k] contain i elements in the box with k?

Indistinguishable objects in indistinguishable boxes

When placing k indistinguishable objects into n indistinguishable boxes, what matters? _____

► We are partitioning the integer k instead of the set [k].
Example. What are the partitions of 6?

Definition: P(k, i) is the number of partitions of k into i parts. Example. We saw P(6, 1) = 1, P(6, 2) = 3, P(6, 3) = 3, P(6, 4) = 2, P(6, 5) = 1, and P(6, 6) = 1.

Definition: P(k) is the number of partitions of k into any number of parts.

Example. P(6) = 1 + 3 + 3 + 2 + 1 + 1 = 11.

THE CHART, COMPLETED

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none	≤ 1	\geq 1	=1
distinct	distinct	n ^k	$(n)_{k}$	n!S(k,n)	<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k,i)$	1 or 0	S(k, n)	1 or 0
identical	identical	$\sum P(k,i)$	1 or 0	P(k, n)	1 or 0

P(k, n) counts ways to place k identical obj. into n identical boxes.

How many ways to distribute identical objects into identical boxes:

- ► If there is exactly one item in each box?
- If there is at most one item in each box?
- What about with no restrictions?

(This is the # of integer partitions of k into at most n parts.)