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Principle of Inclusion-Exclusion

Example. Suppose that in this class, 14 students play soccer and
11 students play basketball. How many students play a sport?

Solution.

Let S be the set of students who play soccer
and B be the set of students who play basketball.

Then, |S ∪ B | = |S |+ |B | .
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Principle of Inclusion-Exclusion

When A = A1 ∪ · · · ∪ Ak ⊂ U (U for universe) and the sets Ai are
pairwise disjoint, we have |A| = |A1|+ · · ·+ |Ak |.

When A = A1 ∪ · · · ∪ Ak ⊂ U and the Ai are not pairwise disjoint,
we must apply the principle of inclusion-exclusion to determine |A|:

|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|

|A1 ∪ A2 ∪ A3| = |A1|+ |A2|+ |A3|− |A1 ∩ A2|− |A1 ∩ A3|

− |A2 ∩ A3|+ |A1 ∩ A2 ∩ A3|

|A1 ∪ · · · ∪ Am| =
∑

|Ai |−
∑

|Ai ∩ Aj |+
∑

∣

∣Ai ∩ Aj ∩ Ak

∣

∣ · · ·

It may be more convenient to apply inclusion/exclusion where the
Ai are forbidden subsets of U , in which case .
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mmm. . .PIE

The key to using the principle of inclusion-exclusion is determining
the right choice of Ai . The Ai and their intersections should be
easy to count and easy to characterize.

Notation: π = p1p2 · · · pn is the one-line notation for a permutation
of [n] whose first element is p1, second element is p2, etc.

Example. How many permutations p = p1p2 · · · pn are there in
which at least one of p1 and p2 are even?

Solution. Let U be the set of n-permutations.
Let A1 be the set of permutations where p1 is even.
Let A2 be the set of permutations where p2 is even.
In words, A1 ∩ A2 is the set of n-permutations

Now calculate: |A1| = |A2| =
|A1 ∩ A2| =

Applying PIE: So |A1 ∪ A2| =
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mmm. . .PIE

Example. Find the number of integers between 1 and 1000 that
are not divisible by 5, 6, or 8.

Solution. Let U = {n ∈ Z such that 1 ≤ n ≤ 1000}.
Let A1 ⊂ U be the multiples of 5, A2 ⊂ U be the multiples of 6,
and A3 ⊂ U be the multiples of 8. We want |U|− |A1 ∪ A2 ∪ A3|.

In words, A1 ∩ A2 is the set of integers
A1 ∩ A3 is A2 ∩ A3 is
and A1 ∩ A2 ∩ A3 is the set of integers that are

Now calculate: |A1| = |A2| = |A3| =
|A1 ∩ A2| = |A1 ∩ A3| = |A2 ∩ A3| =
|A1 ∩ A2 ∩ A3| =

And finally: So |U|− |A1 ∪ A2 ∪ A3| =
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Combinations with Repetitions

Quick review

1. How many ways are there to choose k elements out of the set
{1 · a1, 1 · a2, · · · , 1 · an}?

2. How many ways are there to choose k elements out of the set
{k · a1, k · a2, · · · , k · an}?

(

really {∞ · a1,∞ · a2, · · · ,∞ · an}
)

What we would like to calculate is:

In how many ways can we choose k elements out of an
arbitrary multiset?

Now, it’s as easy as PIE.
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Combinations with Repetitions

Example. Determine the number of 10-combinations of the
multiset S = {3 · a, 4 · b, 5 · c}.

Game plan: Let U be the set of 10-combs of {∞ · a,∞ · b,∞ · c}.
Use PIE to remove the 10-combs that violate the conditions of S

Define A1 to be 10-combs that include at least a’s.
Define A2 to be 10-combs that include at least b’s.
Define A3 to be 10-combs that include at least c ’s.

In words, A1 ∩ A2 are those 10-combs that
A1 ∩ A3: A2 ∩ A3:
A1 ∩ A2 ∩ A3

Now calculate: |U| = |A1| = |A2| =
((3
5

))

|A3| =
((3
4

))

|A1 ∩ A2| = 3 |A1 ∩ A3| = 1 |A2 ∩ A3| = 0 |A1 ∩ A2 ∩ A3| = 0

And finally: So |U|− |A1 ∪ A2 ∪ A3| =
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Derangements

At a party, 10 partygoers check their hats. They “have a good time”,
and are each handed a hat on the way out. In how many ways can
the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.

Definition: An n-derangement is an n-permutation π = p1p2 · · · pn
such that p1 ̸= 1, p2 ̸= 2, · · · , pn ̸= n.

Note: A derangement is a permutation without fixed points π(i) = i .

Notation: We let Dn be the number of all n-derangements.

When you see Dn, think combinatorially: “The number of ways
to return n hats to n people so no one gets his/her own hat back”
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Calculating the number of derangements

Example. Calculate Dn.

Solution. Let U be the set of all n-permutations.
Remove bad permutations using PIE.
For all i from 1 to n, define Ai to be n-perms where pi = i .

In words, Ai ∩ Aj are n-perms where
Ai ∩ Aj ∩ Ak are n-perms where
In general, Ai1 ∩ · · · ∩ Aik are n-perms with pi1 = i1, · · · , pik = ik .

Now calculate: |U| = |A1| = |A2| =
For all i and j , |Ai ∩ Aj | =
When intersecting k sets, |Ai1 ∩ · · · ∩ Aik | =

Recall: |A1 ∪ · · · ∪ An| =
∑

|Ai |−
∑

|Ai ∩ Aj |+
∑

∣

∣Ai ∩ Aj ∩ Ak

∣

∣ · · ·

Therefore, Dn = |U|− |A1 ∪ · · · ∪ An| =
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Randomly returning hats

Upon simplification, we see
Dn = n!−

(

n
1

)

(n − 1)! +
(

n
2

)

(n − 2)!− · · · + (−1)n
(

n
n

)

0!

= n!− n!
1! + n!

2! − · · · + (−1)n n!
n!

= n!
[

1− 1
1! +

1
2! −

1
3! + · · ·+ (−1)n 1

n!

]

Recall: Taylor series expansion of ex :
ex = 1 + x

1! +
x2

2! +
x3

3! + · · · .
Plug in x = −1 and truncate after n terms to see that
e−1 ≈

[

1− 1
1! +

1
2! −

1
3! + · · ·+ (−1)n 1

n!

]

Conclusion: If n people go to a party and the hats are passed
back randomly, the probability that no one gets his or her hat back
at the party is Dn/n!, which is approximately 1/e ≈ 37%.



Derangements — Ch. 3.1 75

Combinatorial proof involving Dn

Recall: The combinatorial interpretation of Dn is: “The number of
ways to return n hats to n people so no one gets his/her own hat back”

Example. Prove the following recurrence relation for Dn

combinatorially.

Dn = (n − 1)
(

Dn−2 + Dn−1
)
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A formula for Stirling numbers (p. 90) (Careful:
change of
notation

!!)

Recall: S(n, k) =
{

n
k

}

is the number of set partitions of [n] into
exactly k parts, and k!S(n, k) is the number of onto functions [n]→[k].

Question: What is a formula for S(n, k)?

Solution. We will find the number of surjections from [n] to [k].
Use PIE with U = set of all functions from [n] to [k].
We will remove the “bad” functions where the range is not [k].

Define Ai be the set of functions f : [n] → [k] where i is not “hit”.

In words, Ai1 ∩ · · · ∩ Aij are functions where none of i1 through ij
are elements of the image.

We calculate: |U| = kn, |Ai | = (k − 1)n, |Ai ∩ Aj | = (k − 2)n

When intersecting j sets, |Ai1 ∩ · · · ∩ Aij | = (k − j)n.

Therefore, k!S(n, k) =
∑k

j=0(−1)j
(

k
j

)

(k − j)n; we conclude

S(n, k) = 1
k!

∑k
j=0(−1)j

(

k
j

)

(k − j)n= 1
k!

∑k
j=0(−1)k−j

(

k
j

)

jn.
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A formula for Bell numbers (p. 166) (Careful:
change of
notation

!!)

Recall: Bn is the number of partitions of [n] into any number of parts.
Manipulate our expression from prev. page to find a formula.

Bn =
∑

k≥0

{

n

k

}

=
∑

k≥0

1

k!

k
∑

j=0

k!

j!(k − j)!
(−1)k−j jn

=
∑

k≥0

k
∑

j=0

1

j!(k − j)!
(−1)k−j jn =

∑

k≥0

k
∑

j=0

(−1)k−j

(k − j)!

jn

j!

=
∑

j≥0

∑

k≥j

(−1)k−j

(k − j)!

jn

j!
=

∑

j≥0

jn

j!

∑

m≥0

(−1)m

(m)!
=

∑

j≥0

jn

j!

1

e

Theorem 4.3.3. For any n > 0, Bn = 1
e

∑

j≥0
jn

j! .

For example, B5 =
1
e

(

05

0! +
15

1! +
25

2! +
35

3! +
45

4! +
55

5! + · · ·
)

= 52.


