Compositions

Question: In how many ways can we write a positive integer n as a sum of positive integers?

Compositions

Question: In how many ways can we write a positive integer n as a sum of positive integers?

If order doesn't matter:
A partition: $n=p_{1}+p_{2}+\cdots+p_{\ell}$ for positive integers $p_{1}, p_{2} \ldots, p_{\ell}$ satisfying $p_{1} \geq p_{2} \geq \cdots \geq p_{\ell}$.

Compositions

Question: In how many ways can we write a positive integer n as a sum of positive integers?

If order doesn't matter:
A partition: $n=p_{1}+p_{2}+\cdots+p_{\ell}$ for positive integers $p_{1}, p_{2} \ldots, p_{\ell}$ satisfying $p_{1} \geq p_{2} \geq \cdots \geq p_{\ell}$.
If order does matter:
A composition: $n=i_{1}+i_{2}+\cdots+i_{\ell}$ for positive integers $i_{1}, i_{2} \ldots, i_{\ell}$ with no restrictions.

Compositions

Question: In how many ways can we write a positive integer n as a sum of positive integers?
If order doesn't matter:
A partition: $n=p_{1}+p_{2}+\cdots+p_{\ell}$ for positive integers $p_{1}, p_{2} \ldots, p_{\ell}$ satisfying $p_{1} \geq p_{2} \geq \cdots \geq p_{\ell}$.
If order does matter:
A composition: $n=i_{1}+i_{2}+\cdots+i_{\ell}$ for positive integers $i_{1}, i_{2} \ldots, i_{\ell}$ with no restrictions.

4	$\left\{\begin{array}{l}4 \\ 3+1 \\ 3+1\end{array}\right.$
$2+2$	$\left\{\begin{array}{l}\text { There are } 2^{n-1} \text { compositions of } n . \\ 1+3 \\ 2+2\end{array}\right.$
$2+1+1$	$\left\{\begin{array}{l}2+1+1 \\ 1+2+1 \\ 1+1+2\end{array}\right.$
$1+1+1+1$	$\{1+1+1$

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=$

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=1+G(x)+G(x)^{2}+G(x)^{3}+\cdots$.

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=1+G(x)+G(x)^{2}+G(x)^{3}+\cdots$.

- This is an infinite sum of (likely infinite) power series. Is this OK?
- The constant term h_{0} of $H(x)$ only makes sense if \qquad

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=1+G(x)+G(x)^{2}+G(x)^{3}+\cdots$.

- This is an infinite sum of (likely infinite) power series. Is this OK?
- The constant term h_{0} of $H(x)$ only makes sense if $g_{0}=0$.

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=1+G(x)+G(x)^{2}+G(x)^{3}+\cdots$.

- This is an infinite sum of (likely infinite) power series. Is this OK?
- The constant term h_{0} of $H(x)$ only makes sense if $g_{0}=0$.
- This implies that x^{n} divides $G(x)^{n}$. Hence, there are at most $n-1$ summands which contain x^{n-1}. We conclude that the infinite sum makes sense.

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$.
What can we learn about the composition $H(x)=F(G(x))$?
Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=1+G(x)+G(x)^{2}+G(x)^{3}+\cdots$.

- This is an infinite sum of (likely infinite) power series. Is this OK?
- The constant term h_{0} of $H(x)$ only makes sense if $g_{0}=0$.
- This implies that x^{n} divides $G(x)^{n}$. Hence, there are at most $n-1$ summands which contain x^{n-1}. We conclude that the infinite sum makes sense.

For a general composition with $g_{0}=0$,
$F(G(x))=\sum_{n \geq 0} f_{n} G(x)^{n}=f_{0}+f_{1} G(x)+f_{2} G(x)^{2}+f_{3} G(x)^{3}+\cdots$.

Compositions. of. Generating Functions.

Interpreting $\frac{1}{1-G(x)}=1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$:
Recall: The generating function $G(x)^{n}$ counts sequences of length n of objects $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, each of type G, and the coefficient $\left[x^{k}\right]\left(G(x)^{n}\right)$ counts those n-sequences that have total size equal to k.

Compositions. of. Generating Functions.

Interpreting $\frac{1}{1-G(x)}=1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$:
Recall: The generating function $G(x)^{n}$ counts sequences of length n of objects $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, each of type G, and the coefficient $\left[x^{k}\right]\left(G(x)^{n}\right)$ counts those n-sequences that have total size equal to k.

Conclusion: As long as $g_{0}=0$, then $1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$ counts sequences of any length of objects of type G, and the coefficient $\left[x^{k}\right] \frac{1}{1-G(x)}$ counts those that have total size equal to k.

Compositions. of. Generating Functions.

Interpreting $\frac{1}{1-G(x)}=1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$:
Recall: The generating function $G(x)^{n}$ counts sequences of length n of objects $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, each of type G, and the coefficient $\left[x^{k}\right]\left(G(x)^{n}\right)$ counts those n-sequences that have total size equal to k.

Conclusion: As long as $g_{0}=0$, then $1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$ counts sequences of any length of objects of type G, and the coefficient $\left[x^{k}\right] \frac{1}{1-G(x)}$ counts those that have total size equal to k.
Alternatively: Interpret $\left[x^{k}\right] \frac{1}{1-G(x)}$ thinking of k as this total size.
First, find all ways to break down k into integers $i_{1}+\cdots+i_{\ell}=k$.
Then create all sequences of objects of type G in which object j has size i_{j}.

Compositions. of. Generating Functions.

Interpreting $\frac{1}{1-G(x)}=1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$:
Recall: The generating function $G(x)^{n}$ counts sequences of length n of objects $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, each of type G, and the coefficient $\left[x^{k}\right]\left(G(x)^{n}\right)$ counts those n-sequences that have total size equal to k.

Conclusion: As long as $g_{0}=0$, then $1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$ counts sequences of any length of objects of type G, and the coefficient $\left[x^{k}\right] \frac{1}{1-G(x)}$ counts those that have total size equal to k.
Alternatively: Interpret $\left[x^{k}\right] \frac{1}{1-G(x)}$ thinking of k as this total size.
First, find all ways to break down k into integers $i_{1}+\cdots+i_{\ell}=k$.
Then create all sequences of objects of type G in which object j has size i_{j}.

Think: A composition of generating functions equals a composition. of. generating. functions.

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i ".

What does size correspond to?

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i ".

What does size correspond to?
How many have value i?

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i ".

What does size correspond to?
How many have value i? Exactly one: the number i.
So the generating function for our objects is $G(x)=0+1 x^{1}+1 x^{2}+1 x^{3}+1 x^{4}+\cdots=$

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i ".

What does size correspond to?
How many have value i? Exactly one: the number i.
So the generating function for our objects is $G(x)=0+1 x^{1}+1 x^{2}+1 x^{3}+1 x^{4}+\cdots=$

We conclude that the generating function for compositions is $H(x)=\frac{1}{1-G(x)}=$

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i ".

What does size correspond to?
How many have value i? Exactly one: the number i.
So the generating function for our objects is
$G(x)=0+1 x^{1}+1 x^{2}+1 x^{3}+1 x^{4}+\cdots=$
We conclude that the generating function for compositions is $H(x)=\frac{1}{1-G(x)}=$
So the number of compositions of n is

A Composition Example

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

A Composition Example

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of platoons of size $\left(i_{1}, \ldots, i_{\ell}\right)$.

Given i soldiers in a platoon, in how many ways can we assign the platoon a leader? \qquad

A Composition Example

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of platoons of size $\left(i_{1}, \ldots, i_{\ell}\right)$.

Given i soldiers in a platoon, in how many ways can we assign the platoon a leader? \qquad
Therefore $G(x)=$

A Composition Example

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of platoons of size (i_{1}, \ldots, i_{ℓ}).

Given i soldiers in a platoon, in how many ways can we assign the platoon a leader? \qquad
Therefore $G(x)=$
And the generating function for such a military breakdown is
$H(x)=\frac{1}{1-G(x)}=\frac{1-2 x+x^{2}}{1-3 x+x^{2}}$

Domino Tilings

Example. How many square-domino tilings are there of a $1 \times n$ board?

Domino Tilings

Example. How many square-domino tilings are there of a $1 \times n$ board?
Solution. A tiling corresponds to a sequence (i_{1}, \ldots, i_{ℓ}), where i_{j} \qquad .

Domino Tilings

Example. How many square-domino tilings are there of a $1 \times n$ board?
Solution. A tiling corresponds to a sequence (i_{1}, \ldots, i_{ℓ}), where i_{j} .
So $G(x)=$ \qquad and therefore $H(x)=$ \qquad .

Domino Tilings

Example. How many square-domino tilings are there of a $1 \times n$ board?
Solution. A tiling corresponds to a sequence (i_{1}, \ldots, i_{ℓ}), where i_{j} \qquad .
So $G(x)=$ \qquad , and therefore $H(x)=$ \qquad .

Another way to see this:

			x^{2}	x^{3}			x	x^{6}	x^{7}	x^{8}	x^{9}	x^{10}	x^{11}	x^{12}
$G(x)^{0}=$														
$G(x)^{1}=$														
$G(x)^{2}=$														
$G(x)^{3}=$														
$G(x)^{4}=$														
$G(x)^{5}=$														
$G(x)^{6}=$														
$1 /(1-G(x))=$														

