Combinatorics of Core Partitions

Christopher R. H. Hanusa

Queens College, CUNY

Joint work with Brant Jones, James Madison University Drew Armstrong, University of Miami Rishi Nath, York College, CUNY
Tom Denton, Google
Cesar Ceballos, York University, Toronto
http://qcpages.qc.edu/~chanusa/research

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i.
The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is an a-core if no boxes have hook length a.

10	(6.	5	2 L
7	3	2	
6	2	1	
3			
2			
1			

Simultaneous $(4,7)$-core partition

$$
\begin{gathered}
\text { 4-Core Partition } \\
\lambda=(5,3,3,1,1,1)
\end{gathered}
$$

- There are infinitely many a-core partitions. ($a \geq 2$)

Of interest: Partitions that are both a-core and b-core. $(a, b)=1$

- (Anderson, 2002): \# (a,b)-core partitions equals $\frac{1}{a+b}\binom{a+b}{a}$.

Core partitions in the literature

- Representation Theory: (origin)
- Nakayama conjecture, proved by Brauer \& Robinson 1947 says a-cores label a-blocks of irreducible modular representations for S_{n}.
- Number Theory:
- Let $c_{a}(n)=\#$ of a-core partitions of n.
$-\ln$ 1976, Olsson proved $\sum_{n \geq 0} c_{a}(n) x^{n}=\prod_{n \geq 1} \frac{\left(1-x^{n a}\right)^{a}}{1-x^{n}}$
Numerical properties of $c_{a}(n)$?
- 1996: Granville \& Ono proved positivity: $c_{a}(n)>0(a \geq 4)$.
- 1999: Stanton conjectured monotonicity: $c_{a+1}(n) \geq c_{a}(n)$
- 2012: R. Nath \& I conjectured monotonicity: $s c_{a+2}(n) \geq s c_{a}(n)$
- Modular forms: g.f. related to Dedekind's η-fcn, a m.f. of wt. $1 / 2$.
- Group Theory: By Lascoux 2001, a-cores \longleftrightarrow coset reps in $\widetilde{S}_{a} / S_{a}$ Group actions on combinatorial objects!!!!

Anderson's bijection and the formula

Building on James's abacus diagrams, Anderson found a bijection:
$\left\{\begin{array}{c}\text { simultaneous } \\ (a, b) \text {-cores }\end{array}\right\} \stackrel{\text { James }}{\longleftrightarrow}\left\{\begin{array}{c}(a, b) \text {-flush } \\ \text { abaci }\end{array}\right\} \stackrel{\text { And }}{\longleftrightarrow}\left\{\begin{array}{c}(a, b) \text {-Dyck paths } \\ (0,0) \rightarrow(b, a) \\ \text { above } y=\frac{a}{b} x\end{array}\right\}$

-4	-3	-1	
0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Proof that the number of (a, b)-Dyck paths is $\frac{1}{a+b}\binom{a+b}{a}$:

- Path rotation gives an equivalence relation on the set of all lattice paths from $(0,0) \rightarrow(b, a)$.
- There are $\binom{a+b}{a}$ such paths and the equivalence classes have $a+b$ elements each.

Familiar numbers

a	1	2	3	4	5	6	n
\# of $(a, a+1)$-cores:	1	2	5	14	42	132	

Specialize Anderson's result:

$$
\begin{gathered}
\#(t, t+1) \text {-cores } \\
\frac{1}{2 t+1}\binom{2 t+1}{t}=\frac{1}{t+1}\binom{2 t}{t}
\end{gathered}
$$

Question: Is there a simple statistic on simultaneous core partitions that gives us a q-analog of the Catalan numbers?

$$
\sum_{\substack{\lambda \text { is a } \\
(t, t+1) \text {-core }}} q^{\operatorname{stat}(\lambda)}=\frac{1}{[t+1]_{q}}\left[\begin{array}{c}
2 t \\
t
\end{array}\right]_{q}
$$

Answer: Yes. We will create an analog of the major statistic.

The major statistic

For a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$, the major statistic $\operatorname{maj}(\pi)$ is the sum of the positions of the descents of π :

$$
\operatorname{maj}(\pi)=\sum_{i: \pi_{i-1}>\pi_{i}} i
$$

For a $(t, t+1)$-core λ, create the sequence $b=\left(b_{0}, \ldots, b_{t-1}\right)$, where $b_{i}=\# 1^{\text {st }}$ col. boxes with hook length $\equiv i \bmod t$.
Define $\quad \operatorname{maj}(\lambda)=\sum_{i: b_{i-1} \geq b_{i}}\left(2 i-b_{i}\right)$.
Theorem. (AHJ '13)

$$
\sum_{\substack{\lambda \text { is a } \\
(t, t+1) \text {-core }}} q^{\operatorname{maj}(\lambda)}=\frac{1}{[t+1]_{q}}\left[\begin{array}{c}
2 t \\
t
\end{array}\right]_{q}
$$

See: maj defined as a sum over descents in a sequence.

Why? Major index on Dyck paths!

Add positions of valleys: $\quad \frac{1}{[4]_{q}}\left[\begin{array}{l}6 \\ 3\end{array}\right]_{q}=q^{0}+q^{2}+q^{3}+q^{4}+q^{2+4}$

Reflection Groups

The combinatorics of groups:

- Made up of a set of elements $W=\left\{w_{1}, w_{2}, \ldots\right\}$.
- Multiplication of two elements $w_{1} w_{2}$ stays in the group.
- ALTHOUGH, it is not the case that $w_{1} w_{2}=w_{2} w_{1}$.
- There is an identity element (id) \& Every element has an inverse.
- Think: (Non-zero real numbers) or (invertible $n \times n$ matrices.)

We will talk about reflection groups. (With nice pictures)

- W is generated by a set of generators $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$.
- Every $w \in W$ can be written as a product of generators.
- Along with a set of relations.
- These are rules to convert between expressions.
- $s_{i}^{2}=\mathrm{id}$. -and- $\left(s_{i} s_{j}\right)^{\text {power }}=\mathrm{id}$.

For example, $w=s_{3} s_{2} s_{1} s_{1} s_{2} s_{4}=s_{3} s_{2}$ id $s_{2} s_{4}=s_{3} i d s_{4}=s_{3} s_{4}$

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=\mathrm{id}\right)$

- When the angle between H_{s} and H_{t} is $\frac{\pi}{3}$, relation is $(s t)^{3}=\mathrm{id}$.
- The group depends on the placement of the hyperplanes. $|S|=6$.

Infinite Reflection Groups

An infinite reflection group: the affine permutations \widetilde{S}_{n}.

- Add a new generator s_{0} and a new affine hyperplane H_{0}.

Elements generated by $\left\{s_{0}, s_{1}, s_{2}\right\}$ correspond to alcoves here.

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

- Geometry. Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312.

Coordinates:

3	1
1	

Word: $s_{0} s_{1} s_{2} s_{1} s_{0}$
Permutation:
$(-3,2,7)$

- Others! Lattice path, order ideal, etc.

They all play nicely with each other.

Action of generators on the core partition

- Label the boxes of λ with residues.
- s_{i} acts by adding or removing boxes with residue i.

Example. $\lambda=(5,3,3,1,1)$ is a 4-core.

- has removable 0 boxes
- has addable 1, 2, 3 boxes.

Idea: We can use this to figure out a word for w.

0	1	2	3	0	1
3	0	1	2	3	0
2	3	0	1	2	3
1	2	3	0	1	2
0	1	2	3	0	1
3	0	1	2	3	0

$$
\begin{aligned}
& s_{1} \downarrow \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline & & & & & \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|ll|}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Finding a word for an affine permutation.

Example: The word in S_{4} corresponding to $\lambda=(6,4,4,2,2)$:
$s_{1} S_{0} S_{2} s_{1} S_{3} s_{2} s_{0} S_{3} S_{1} S_{0}$

0	1	2	3	0	1								
3	0	1	2	3	0								
2	3	0	1	2	3								
1	2	3	0	1	2								
0	1	2	3	0	1								
3	0	1	2	3	0	\quad	0	1	2	3	0	1	
:---	:---	:---	:---	:---	:---	:---	:---	:---					
3	0	1	2	3	0								
2	3	0	1	2	3								
1	2	3	0	1	2								
0	1	2	3	0	1								

0	1	2	3	0	1		0	1	2	3	0	1		0	1	2		3	0	1		0	1	2	3	0	1	
3	0	1	2	3	0		3	0	1	2	3	0		3	0	1		2	3	0		3	0	1	2	3	0	
2	3	0	1	2	3	s_{2}	2	3	0	1	2	3	s_{1}	2	3	0		1	2	3	s_{3}	2	3	0	1	2	3	s_{2}
1	2	3	0	1	2		1	2	3	0	1	2		1	2	3		0	1	2		1	2	3	0	1	2	
0	1	2	3	0	1		0	1	2	3	0	1		0	1	2		3	0	1		0	1	2	3	0	1	
3	0	1	2	3	0		3	0	1	2	3	0		3	0			2	3	0		3	0	1	2	3	0	

The bijection between cores and alcoves

Simultaneous core partitions

Fishel-Vazirani proved an alcove interpretation of $n /(m n+1)$-cores.
How many partitions are both 3-cores and 2-cores? $C_{2}=2$.

How many partitions are both 3 -cores and 4 -cores? $C_{3}=5$.
From Anderson's formula $\frac{1}{a+b}\binom{a+b}{a}$,
The number of $(3,7)$-cores is $\frac{1}{10}\binom{10}{3}=\frac{1}{10} \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1}=12$.

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012) Sets up the theory.
- Article (16 pp) published in European Journal of Comb.

Applies the theory.

- Joint with Brant Jones, JMU, Drew Armstrong, Miami.

Research Questions

\star What numerical properties do self-conjugate core partitions have?

- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)
- Joint with Rishi Nath, York College, CUNY.

Research Questions

\star What numerical properties do self-conjugate core partitions have?

- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)
- Joint with Rishi Nath, York College, CUNY.
\star Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t}\binom{s+t}{s}$)
- Question. What is the average size of an (s, t)-core partition?
- Progress: Answer: $(s+t+1)(s-1)(t-1) / 24$. Proof?
- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t}\binom{s+t}{s}$?
- Progress: m-Catalan number C_{3} through $(3,3 m+1)$-cores.
- Question: Why is the zeta map a bijection?
- Progress: An inverse in certain cases.
- Joint with Tom Denton and Cesar Ceballos.

