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Definition: A combinatorial interpretation of a numerical quantity
is a set of combinatorial objects that is counted by the quantity.

Example. We can choose k objects out of n total objects in
(
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Use this fact “backwards” by interpreting an occurrence of
(
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as
the number of ways to choose k objects out of n.

This leads to my favorite kind of proof:

Definition: A combinatorial proof of an identity X = Y is a proof
by counting (!). You find a set of objects that can be interpreted
as a combinatorial interpretation of both the left hand side (LHS)
and the right hand side (RHS) of the equation. As both sides of
the equation count the same set of objects, they must be equal!

◮ It is important to get the set of objects right.

◮ To do this, you must ask a good question: “In how many ways...”
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Because the two quantities count the same set of objects in two
different ways, the two answers are equal. �
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Another Simple Combinatorial Proof

Example. Prove Equation (2.4): k
(

n

k

)

= n
(

n−1
k−1

)

.

Analytic Proof:
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Another Simple Combinatorial Proof

Example. Prove Equation (2.4): k
(

n

k

)

= n
(

n−1
k−1

)

.

Analytic Proof:

Combinatorial Proof:

Question: In how many ways can we choose from n club members
a committee of k members with a chairperson?

Answer 1:

Answer 2:

Because the two quantities count the same set of objects in two
different ways, the two answers are equal. �
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Pascal’s Identity

Example. Prove Theorem 2.2.1:
(

n

k

)

=
(

n−1
k

)

+
(

n−1
k−1

)

.

Combinatorial Proof:

Question: In how many ways can we choose k flavors of ice cream
if n different choices are available?

Answer 1:

Answer 2:

Because the two quantities count the same set of objects in two
different ways, the two answers are equal. �
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Summing Binomial Coefficients

Example. Prove Equation (2.3):
(

n

0

)

+
(

n

1

)

+
(

n

2

)

+ · · ·+
(

n

n

)

= 2n.

Analytic Proof: ???

Combinatorial Proof:

Question: How many subsets of {1, 2, . . . , n} are there?

Answer 1: Condition on how many elements are in a subset.

Answer 2:

Because the two quantities count the same set of objects in two
different ways, the two answers are equal. �

—Worksheet—
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Tiling a board with dominos and squares

Question: How many ways are there to tile a 1× n board using
only dominoes and squares?

Definition: Let fn = # of ways to tile a 1× n board.

f0 = 1
f1 = 1

f2 = 2

f3 = 3

f4 = 5

Fibonacci!
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Fibonacci identities

We have a new definition for Fibonacci:

fn = the number of square-domino tilings of a 1× n board.

This combinatorial interpretation of the Fibonacci numbers
provides a framework to prove identities.

◮ Did you know that f2n = (fn)
2 + (fn−1)

2?

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14
1 2 3 5 8 13 21 34 55 89 144 233 377 610

f14 = f 27 + f 26

610 = 441 + 169
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Further reading:

Arthur T. Benjamin and Jennifer J. Quinn
Proofs that Really Count, MAA Press, 2003.
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