► 3+1+1, 1+3+1, and 1+1+3 are all the same partition, so we will write the numbers in non-increasing order.

- ► 3+1+1, 1+3+1, and 1+1+3 are all the same partition, so we will write the numbers in non-increasing order.
- We use greek letters to denote partitions, often λ ("lambda"), μ ("mu"), and ν ("nu").

- ► 3+1+1, 1+3+1, and 1+1+3 are all the same partition, so we will write the numbers in non-increasing order.
- We use greek letters to denote partitions, often λ ("lambda"), μ ("mu"), and ν ("nu").
- ▶ We'll write: $\lambda : n = n_1 + n_2 + \cdots + n_k$ or $\lambda \vdash n$.

For example, $\lambda : 5 = 3 + 1 + 1$, or $\lambda = 311$, or $\lambda = 3^11^2$, or $311 \vdash 5$.

- ► 3+1+1, 1+3+1, and 1+1+3 are all the same partition, so we will write the numbers in non-increasing order.
- We use greek letters to denote partitions, often λ ("lambda"), μ ("mu"), and ν ("nu").
- We'll write: $\lambda : n = n_1 + n_2 + \cdots + n_k$ or $\lambda \vdash n$.

For example, $\lambda : 5 = 3 + 1 + 1$, or $\lambda = 311$, or $\lambda = 3^11^2$, or $311 \vdash 5$.

A pictoral representation of $\lambda = n_1 n_2 \cdots n_k$ is its *Ferrers diagram*, a left-justified array of dots with k rows, containing n_i dots in row i.

Example. The • • • • • • Ferrers diagram • • • of $42211 \vdash 10$ is • •

- ► 3+1+1, 1+3+1, and 1+1+3 are all the same partition, so we will write the numbers in non-increasing order.
- We use greek letters to denote partitions, often λ ("lambda"), μ ("mu"), and ν ("nu").
- We'll write: $\lambda : n = n_1 + n_2 + \cdots + n_k$ or $\lambda \vdash n$.

For example, $\lambda : 5 = 3 + 1 + 1$, or $\lambda = 311$, or $\lambda = 3^11^2$, or $311 \vdash 5$.

A pictoral representation of $\lambda = n_1 n_2 \cdots n_k$ is its *Ferrers diagram*, a left-justified array of dots with k rows, containing n_i dots in row i.

Example. The • • • Ferrers diagram • • of $42211 \vdash 10$ is • • The **conjugate** of a partition λ is the partition λ^c which interchanges rows and columns.

- ► 3+1+1, 1+3+1, and 1+1+3 are all the same partition, so we will write the numbers in non-increasing order.
- We use greek letters to denote partitions, often λ ("lambda"), μ ("mu"), and ν ("nu").
- We'll write: $\lambda : n = n_1 + n_2 + \cdots + n_k$ or $\lambda \vdash n$.

For example, $\lambda : 5 = 3 + 1 + 1$, or $\lambda = 311$, or $\lambda = 3^11^2$, or $311 \vdash 5$.

A pictoral representation of $\lambda = n_1 n_2 \cdots n_k$ is its *Ferrers diagram*, a left-justified array of dots with k rows, containing n_i dots in row i.

Example. The • • • Ferrers diagram • • of $42211 \vdash 10$ is • • The **conjugate** of a partition λ is the partition λ^c which interchanges rows and columns.

Some partitions are **self-conjugate**, satisfying $\lambda = \lambda^c$.

Recall from our basketball example: The generating function for the number of ways to partition an integer into parts of size 1, 2, or 3 is

$$\frac{1}{(1-x)}\frac{1}{(1-x^2)}\frac{1}{(1-x^3)}$$

Recall from our basketball example: The generating function for the number of ways to partition an integer into parts of size 1, 2, or 3 is

$$\frac{1}{(1-x)}\frac{1}{(1-x^2)}\frac{1}{(1-x^3)}$$

If we include parts of any size, we infer:

Let P(n) be the number of partitions of the integer n. Then

$$\sum_{n\geq 0} P(n)x^n = \prod_{k=1}^{\infty} \frac{1}{1-x^k}$$

Recall from our basketball example: The generating function for the number of ways to partition an integer into parts of size 1, 2, or 3 is

$$\frac{1}{(1-x)}\frac{1}{(1-x^2)}\frac{1}{(1-x^3)}$$

If we include parts of any size, we infer: Let P(n) be the number of partitions of the integer n. Then

$$\sum_{n\geq 0} P(n)x^n = \prod_{k=1}^{\infty} \frac{1}{1-x^k}$$

Notes:

▶ Infinite product! But, for any *n* only finitely many terms involved.

Recall from our basketball example: The generating function for the number of ways to partition an integer into parts of size 1, 2, or 3 is

$$\frac{1}{(1-x)}\frac{1}{(1-x^2)}\frac{1}{(1-x^3)}$$

If we include parts of any size, we infer: Let P(n) be the number of partitions of the integer n. Then

$$\sum_{n\geq 0} P(n)x^n = \prod_{k=1}^{\infty} \frac{1}{1-x^k}$$

Notes:

- ▶ Infinite product! But, for any *n* only finitely many terms involved.
- ▶ There is a beautiful generating function, but **no nice formula**!

A formula for integer partitions

Bruinier and Ono (2011) found an algebraic formula for the partition function P (n) as a finite sum of algebraic numbers as follows. Define the weight-2 meromorphic modular form F (z) by

$$F(z) = \frac{1}{2} \frac{E_2(z) - 2E_2(2z) - 3E_2(3z) + 6E_2(6z)}{\eta^2(z)\eta^2(2z)\eta^2(3z)\eta^3(6z)},$$
(27)

were $q = e^{2\pi i z}$, $E_2(q)$ is an Eisenstein series, and $\eta(q)$ is a Dedekind eta function. Now define

$$R(z) = -\left(\frac{1}{2\pi i}\frac{d}{dz} + \frac{1}{2\pi y}\right)F(z),$$
(28)

where z = x + iy. Additionally let Q_a be any set of representatives of the equivalence classes of the integral binary quadratic form $Q(x, y) = ax^2 + bxy + cy^2$ such that $6 \mid a$ with a > 0 and $b \equiv 1 \pmod{21}$, and for each Q(x, y), let a_Q be the so-called CM point in the upper harp-length for which $Q(a_Q, 1) = 0$. Then

$$P(n) = \frac{\text{Tr}(n)}{24 n - 1},$$
(29)

where the trace is defined as

$$Tr(n) = \sum_{Q \in Q_n} R(\alpha_Q). \quad (30)$$

Weisstein, Eric W. "Partition Function P." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/PartitionFunctionP.html

A formula for integer partitions

Bruinier and Ono (2011) found an algebraic formula for the partition function P (n) as a finite sum of algebraic numbers as follows. Define the weight-2 meromorphic modular form F (z) by

$$F(z) = \frac{1}{2} \frac{E_2(z) - 2E_2(2z) - 3E_2(3z) + 6E_2(6z)}{\eta^2(z)\eta^2(2z)\eta^2(3z)\eta^3(6z)},$$
(27)

were $q = e^{2\pi i z}$, $E_2(q)$ is an Eisenstein series, and $\eta(q)$ is a Dedekind eta function. Now define

$$R(z) = -\left(\frac{1}{2\pi i}\frac{d}{dz} + \frac{1}{2\pi y}\right)F(z),$$
(28)

where z = x + iy. Additionally let Q_a be any set of representatives of the equivalence classes of the integral binary quadratic form $Q(x, y) = ax^2 + bxy + cy^2$ such that $6 \mid a$ with a > 0 and $b \equiv 1 \pmod{21}$, and for each Q(x, y), let a_Q be the so-called CM point in the upper harp-length for which $Q(a_Q, 1) = 0$. Then

$$P(n) = \frac{\text{Tr}(n)}{24 n - 1},$$
(29)

where the trace is defined as

$$Tr(n) = \sum_{Q \in Q_n} R(\alpha_Q). \quad (30)$$

Weisstein, Eric W. "Partition Function P." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/PartitionFunctionP.html

Theorem.
$$P(n,2) =$$

Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT !!!!1!!!11!!

=

The number of partitions of nusing only odd parts, o_n The number of partitions of nusing distinct parts, d_n *o*₆:

Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT !!!! 1!!! 11!!

The number of partitions of nusing only odd parts, o_n The number of partitions of nusing distinct parts, d_n

Investigation: Does this make sense? For n = 6,

*d*₆:

=

Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT !!!! 1!!! 11!!

=

The number of partitions of n using only odd parts, o_n

The number of partitions of nusing distinct parts, d_n

Investigation: Does this make sense? For n = 6, o_6 : d_6 :

Solution. Determine the generating functions

$$O(x) = \sum_{n \ge 0} o_n x^n \qquad \qquad D(x) = \sum_{n \ge 0} d_n x^n$$

Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT!!!!1!!!11!!

The number of partitions of n using only odd parts, o_n = The number of partitions of n using distinct parts, d_n

Investigation: Does this make sense? For n = 6, d_6 : 06:

Solution. Determine the generating functions

$$O(x) = \sum_{n \ge 0} o_n x^n \qquad \qquad D(x) = \sum_{n \ge 0} d_n x^n$$

See, I told you they were equal. \Box

Example. Prove a recurrence relation for P(n, k):

$$P(n,k) = P(n-1,k-1) + P(n-k,k)$$

Example. Prove a recurrence relation for P(n, k):

$$P(n, k) = P(n - 1, k - 1) + P(n - k, k)$$

Question: How many partitions of n are there into k parts? LHS: P(n, k)

Example. Prove a recurrence relation for P(n, k):

$$P(n, k) = P(n - 1, k - 1) + P(n - k, k)$$

Question: How many partitions of n are there into k parts? LHS: P(n, k)

RHS: Condition on whether the smallest part is of size 1.

▶ If so, there are P(n-1, k-1) partitions via the bijection

 $f:\left\{\begin{array}{c}\text{partitions of }n\text{ into }k\text{ parts}\\\text{with smallest part }1.\end{array}\right\}\to\left\{\begin{array}{c}\text{partitions of }n-1\\\text{into }k-1\text{ parts.}\end{array}\right\}.$

Example. Prove a recurrence relation for P(n, k):

$$P(n, k) = P(n - 1, k - 1) + P(n - k, k)$$

Question: How many partitions of n are there into k parts? LHS: P(n, k)

RHS: Condition on whether the smallest part is of size 1.

▶ If so, there are P(n-1, k-1) partitions via the bijection

 $f:\left\{\begin{array}{c}\text{partitions of }n\text{ into }k\text{ parts}\\\text{with smallest part }1.\end{array}\right\}\to\left\{\begin{array}{c}\text{partitions of }n-1\\\text{into }k-1\text{ parts.}\end{array}\right\}.$

▶ If not: there are P(n - k, k) partitions via the bijection

$$g: \left\{ \begin{array}{c} \text{partitions of } n \text{ into } k \text{ parts} \\ \text{with smallest part} \neq 1. \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{partitions of } n-k \\ \text{into } k \text{ parts.} \end{array} \right\}$$

Using conjugation

Theorem 4.4.1. P(n, k) equals P(n, largest part = k)

Using conjugation

Theorem 4.4.1. P(n, k) equals P(n, largest part = k)Proof. The conjugation function $f : \lambda \to \lambda^c$ is a bijection

$$f: \left\{ \begin{array}{c} \text{partitions of } n \\ \text{into exactly } k \text{ parts} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{partitions of } n \text{ with} \\ \text{largest part of size } k. \end{array} \right\}$$

Using conjugation

Theorem 4.4.1. P(n, k) equals P(n, largest part = k)Proof. The conjugation function $f : \lambda \to \lambda^c$ is a bijection

$$f: \left\{ \begin{array}{c} \text{partitions of } n \\ \text{into exactly } k \text{ parts} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{partitions of } n \text{ with} \\ \text{largest part of size } k. \end{array} \right\}$$

The same bijection gives:

Theorem 4.4.2. _____ equals $P(n, largest part \leq k)$.

Theorem 4.4.3. P(n, self conjugate) = P(n, distinct odd parts)

Theorem 4.4.3. $P(n, self \ conjugate) = P(n, distinct \ odd \ parts)$ *Proof.* Define a bijection which "unfolds" self-conjugate partitions: $f: \begin{cases} self-conjugate \\ partitions \ \lambda \ of \ n \end{cases} \xrightarrow{} \begin{cases} partitions \ \mu \ of \ n \ into \\ distinct \ odd \ parts \end{cases}$

• Define parts of μ by **unpeeling** λ layer by layer.

• Iteratively remove the first row and first column of λ .

Theorem 4.4.3. $P(n, self \ conjugate) = P(n, distinct \ odd \ parts)$ *Proof.* Define a bijection which "unfolds" self-conjugate partitions: $f: \left\{ \begin{array}{c} self-conjugate \\ partitions \ \lambda \ of \ n \end{array} \right\} \rightarrow \left\{ \begin{array}{c} partitions \ \mu \ of \ n \ into \\ distinct \ odd \ parts \end{array} \right\}.$

• Define parts of μ by **unpeeling** λ layer by layer.

• Iteratively remove the first row and first column of λ .

Question: Is f well defined?

Theorem 4.4.3. $P(n, self \ conjugate) = P(n, distinct \ odd \ parts)$ *Proof.* Define a bijection which "unfolds" self-conjugate partitions: $f: \begin{cases} self-conjugate \\ partitions \ \lambda \ of \ n \end{cases} \xrightarrow{} \begin{cases} partitions \ \mu \ of \ n \ into \\ distinct \ odd \ parts \end{cases}$

• Define parts of μ by **unpeeling** λ layer by layer.

• Iteratively remove the first row and first column of λ .

Question: Is f well defined?

Define the inverse function $g = f^{-1} : \mu \mapsto \lambda$:

- Find the center dot of each part μ_i .
- **Fold** each μ_i about its center dot.
- Nest these folded parts to create λ .

Theorem 4.4.3. $P(n, self \ conjugate) = P(n, distinct \ odd \ parts)$ *Proof.* Define a bijection which "unfolds" self-conjugate partitions: $f: \begin{cases} self-conjugate \\ partitions \ \lambda \ of \ n \end{cases} \xrightarrow{} \begin{cases} partitions \ \mu \ of \ n \ into \\ distinct \ odd \ parts \end{cases}$

• Define parts of μ by **unpeeling** λ layer by layer.

• Iteratively remove the first row and first column of λ .

Question: Is f well defined?

Define the inverse function $g = f^{-1} : \mu \mapsto \lambda$:

- Find the **center dot** of each part μ_i .
- **Fold** each μ_i about its center dot.
- Nest these folded parts to create λ .

Question: Is g well defined?

Theorem 4.4.3. $P(n, self \ conjugate) = P(n, distinct \ odd \ parts)$ *Proof.* Define a bijection which "unfolds" self-conjugate partitions: $f: \begin{cases} self-conjugate \\ partitions \ \lambda \ of \ n \end{cases} \xrightarrow{} \begin{cases} partitions \ \mu \ of \ n \ into \\ distinct \ odd \ parts \end{cases}$

• Define parts of μ by **unpeeling** λ layer by layer.

• Iteratively remove the first row and first column of λ .

Question: Is f well defined?

Define the inverse function $g = f^{-1} : \mu \mapsto \lambda$:

- Find the **center dot** of each part μ_i .
- **Fold** each μ_i about its center dot.
- Nest these folded parts to create λ .

Question: Is g well defined? Question: Is $g(f(\lambda)) = \lambda$?

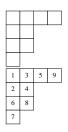
Related to some current lines of research in algebra and combinatorics:

A **Young diagram** is a representation of a partition using left-justified boxes.

Related to some current lines of research in algebra and combinatorics:

A **Young diagram** is a representation of a partition using left-justified boxes.

A **standard Young tableau** is a placement of the integers 1 through *n* into the boxes, where the numbers in both the rows and the columns are increasing.

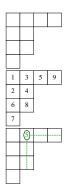


Related to some current lines of research in algebra and combinatorics:

A **Young diagram** is a representation of a partition using left-justified boxes.

A **standard Young tableau** is a placement of the integers 1 through *n* into the boxes, where the numbers in both the rows and the columns are increasing.

The **hook length** h(i,j) of a cell (i,j) is the number of cells in the "hook" to the left and down.



Related to some current lines of research in algebra and combinatorics:

A **Young diagram** is a representation of a partition using left-justified boxes.

A **standard Young tableau** is a placement of the integers 1 through *n* into the boxes, where the numbers in both the rows and the columns are increasing.

The **hook length** h(i,j) of a cell (i,j) is the number of cells in the "hook" to the left and down.

Question: How many SYT are there of shape $\lambda \vdash n$?

Answer:
$$\frac{n!}{\prod_{(i,j)\in\lambda}h(i,j)}$$

