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Solving recurrence relations

Example. Determine a formula for the entries of the sequence {ak}k≥0

that satisfies a0 = 0 and the recurrence ak+1 = 2ak + 1 for k ≥ 0.

Solution. Use generating functions: define A(x) =
∑

k≥0 akx
k .

Step 1: Multiply both sides of the recurrence by xk+1 and sum
over all k :

Step 2: Massage the sums to find copies of A(x).
LHS: Re-index, find missing term; RHS: separate into pieces.

Conversion to functions of A(x):



Solving Recurrence Relations — §3.5 85

Solving recurrence relations

Step 3: Solve for the compact form of A(x).
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Solving recurrence relations

Step 3: Solve for the compact form of A(x).

Step 4: Extract the coefficients.

When the degree of the numerator is smaller than the degree of the
denominator, we can use partial fractions! to determine an expression
for A(x) of the form:

A(x) =
C1

1− 2x
+

C2

1− x

Solving gives A(x) = 1
1−2x + −1

1−x
; each of which can be expanded:
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Step 3: Solve for the compact form of A(x).

Step 4: Extract the coefficients.

When the degree of the numerator is smaller than the degree of the
denominator, we can use partial fractions! to determine an expression
for A(x) of the form:

A(x) =
C1

1− 2x
+

C2

1− x

Solving gives A(x) = 1
1−2x + −1

1−x
; each of which can be expanded:

A(x) =
∑

k≥0

2kxk + (−1)
∑

k≥0

1kxk =
∑

k≥0

(2k − 1) xk

Therefore, ak = 2k − 1.
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A closed form for Fibonacci numbers

Example. Solve the recurrence relation fk = fk−1 + fk−2 with
initial conditions f0 = 0 and f1 = 1.
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Example. Solve the recurrence relation fk = fk−1 + fk−2 with
initial conditions f0 = 0 and f1 = 1.
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∑

k≥0 fkx
k and rewrite the recurrence with

indices without subtraction: fk+2 = fk+1 + fk . Summing over k ≥ 0,
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A closed form for Fibonacci numbers

Example. Solve the recurrence relation fk = fk−1 + fk−2 with
initial conditions f0 = 0 and f1 = 1.

Solution. Define F (x) =
∑

k≥0 fkx
k and rewrite the recurrence with

indices without subtraction: fk+2 = fk+1 + fk . Summing over k ≥ 0,

∑

k≥0

fk+2x
k+2 =

∑

k≥0

(fk+1 + fk)x
k+2

∑

k≥0

fk+2x
k+2 =

∑

k≥0

fk+1x
k+2 +

∑

k≥0

fkx
k+2

∑

k≥0

fk+2x
k+2 = x

∑

k≥0

fk+1x
k+1 + x2

∑

k≥0

fkx
k

∑

k≥2

fkx
k = x

∑

k≥1

fkx
k + x2

∑

k≥0

fkx
k
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A closed form for Fibonacci numbers

Example. Solve the recurrence relation fk = fk−1 + fk−2 with
initial conditions f0 = 0 and f1 = 1.

Solution. Define F (x) =
∑

k≥0 fkx
k and rewrite the recurrence with

indices without subtraction: fk+2 = fk+1 + fk . Summing over k ≥ 0,

∑

k≥0

fk+2x
k+2 =

∑

k≥0

(fk+1 + fk)x
k+2

∑

k≥0

fk+2x
k+2 =

∑

k≥0

fk+1x
k+2 +

∑

k≥0

fkx
k+2

∑

k≥0

fk+2x
k+2 = x

∑

k≥0

fk+1x
k+1 + x2

∑

k≥0

fkx
k

∑

k≥2

fkx
k = x

∑

k≥1

fkx
k + x2

∑

k≥0

fkx
k

Therefore,
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A closed form for Fibonacci numbers

So the Fibonacci numbers have generating function x/(1− x − x2).
The roots of (1− x − x2) = (1− r+x)(1 − r−x) are r± = (1±

√
5)/2.



Solving Recurrence Relations — §3.5 87

A closed form for Fibonacci numbers

So the Fibonacci numbers have generating function x/(1− x − x2).
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So the Fibonacci numbers have generating function x/(1− x − x2).
The roots of (1− x − x2) = (1− r+x)(1 − r−x) are r± = (1±

√
5)/2.

Using partial fractions,

F (x) =
1√
5

1

1− r+x
− 1√

5

1

1− r−x

Therefore,
∑

k≥0

fkx
k =

∑

k≥0

1√
5

(

1 +
√
5

2

)k

xk −
∑

k≥0

1√
5

(

1−
√
5

2

)k

xk

and we conclude that fk =
1√
5

(

1 +
√
5

2

)k

− 1√
5

(

1−
√
5

2

)k

.

As k → +∞, the second term , so fk ≈ 1√
5

(

1 +
√
5

2

)k



Solving Recurrence Relations — §3.5 87

A closed form for Fibonacci numbers

So the Fibonacci numbers have generating function x/(1− x − x2).
The roots of (1− x − x2) = (1− r+x)(1 − r−x) are r± = (1±

√
5)/2.

Using partial fractions,

F (x) =
1√
5

1

1− r+x
− 1√

5

1

1− r−x

Therefore,
∑

k≥0

fkx
k =

∑

k≥0

1√
5

(

1 +
√
5

2

)k

xk −
∑

k≥0

1√
5

(

1−
√
5

2

)k

xk

and we conclude that fk =
1√
5

(

1 +
√
5

2

)k

− 1√
5

(

1−
√
5

2

)k

.

As k → +∞, the second term , so fk ≈ 1√
5

(

1 +
√
5

2

)k

Practicality: (1 +
√
5)/2 ≈ 1.61803 and 1 mi ≈ 1.609344 km
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Multiplying two generating functions (Convolution)

Let A(x) =
∑

k≥0

akx
k and B(x) =

∑

k≥0

bkx
k .

Question: What is the coefficient of xk in A(x)B(x)?
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xk in AB only when .
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Multiplying two generating functions (Convolution)

Let A(x) =
∑

k≥0

akx
k and B(x) =

∑

k≥0

bkx
k .

Question: What is the coefficient of xk in A(x)B(x)?

When expanding the product A(x)B(x) we multiply terms aix
i in A

by terms bjx
j in B . This product contributes to the coefficient of

xk in AB only when .

Therefore, A(x)B(x) =
∑

k≥0

( )

xk

Combinatorial interpretation of the convolution:

If ak counts all “A” objects of “size” k , and
bk counts all “B” objects of “size” k ,

Then [xk ]
(

A(x)B(x)
)

counts all pairs of objects (A,B)
with total size k .
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A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies,
where for each of 20 BIG candy bars, we can choose at most one, and
for each of 40 different small candies, we can choose as many as we like?
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A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies,
where for each of 20 BIG candy bars, we can choose at most one, and
for each of 40 different small candies, we can choose as many as we like?

Big candy g.f.: B(x) = (1 + x)20 =
∞
∑
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(
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k

)

xk .

Small candy g.f.: S(x) =
1
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∞
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k

))
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∞
∑
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∑
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i
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]
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∞
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A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies,
where for each of 20 BIG candy bars, we can choose at most one, and
for each of 40 different small candies, we can choose as many as we like?

Big candy g.f.: B(x) = (1 + x)20 =
∞
∑

k=0

(

20

k

)

xk .
bk counts

(k big candies)

Small candy g.f.: S(x) =
1

(1− x)40
=

∞
∑

k=0

((

40

k

))

xk .
sk counts

(k small candies)

Total g.f.: B(x)S(x) =
∞
∑

k=0

[

k
∑

i=0

(

20

i

)((

40

k − i

))

]

xk

Conclusion: [x30]B(x)S(x) =

30
∑

i=0

(

20

i

)((

40

30− i

))

So, [xk ]B(x)S(x) counts pairs of the form ∨ w/k total candies.

(some number of big candies, some number of small candies)
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Vandermonde’s Identity (p. 117)

(

m + n

k

)

=

k
∑

j=0

(

m

j

)(

n

k − j

)

Combinatorial proof Generating function proof
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Multiplying two generating functions

Example. What is the coefficient of x7 in x3(1+x)4

(1−2x) ?
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Multiplying two generating functions

Example. What is the coefficient of x7 in x3(1+x)4

(1−2x) ?

Powers of generating functions

A special case of convolution gives the coefficients of powers of a g.f.:

(

A(x)
)2

=
∑

k≥0

( k
∑

i=0

aiak−i

)

xk
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Multiplying two generating functions

Example. What is the coefficient of x7 in x3(1+x)4

(1−2x) ?

Powers of generating functions

A special case of convolution gives the coefficients of powers of a g.f.:

(

A(x)
)2

=
∑

k≥0

( k
∑

i=0

aiak−i

)

xk =
∑

k≥0

(

∑
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)
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Multiplying two generating functions

Example. What is the coefficient of x7 in x3(1+x)4

(1−2x) ?

Powers of generating functions

A special case of convolution gives the coefficients of powers of a g.f.:

(

A(x)
)2

=
∑

k≥0

( k
∑

i=0

aiak−i

)

xk =
∑

k≥0

(

∑

i1+i2=k

ai1ai2

)

xk .

Similarly,
(

A(x)
)n

=
∑

k≥0

(

∑

i1+i2+···+in=k

ai1ai2 · · · ain
)

xk .

[xk ](A(x))n counts sequences of objects (A1,A2, . . . ,An), all of type A,
with a total size over all objects of k .
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