Question: In how many ways can we write a positive integer n as a sum of positive integers?

Question: In how many ways can we write a positive integer n as a sum of positive integers?

If order doesn't matter:

A partition: $n = p_1 + p_2 + \dots + p_\ell$ for positive integers $p_1, p_2 \dots, p_\ell$ satisfying $p_1 \ge p_2 \ge \dots \ge p_\ell$.

Question: In how many ways can we write a positive integer n as a sum of positive integers?

If order doesn't matter:

A **partition**: $n = p_1 + p_2 + \dots + p_\ell$ for positive integers $p_1, p_2 \dots, p_\ell$ satisfying $p_1 \ge p_2 \ge \dots \ge p_\ell$.

If order does matter:

A composition: $n = i_1 + i_2 + \dots + i_\ell$ for positive integers $i_1, i_2 \dots, i_\ell$ with no restrictions.

Question: In how many ways can we write a positive integer n as a sum of positive integers?

If order doesn't matter:

A partition: $n = p_1 + p_2 + \dots + p_\ell$ for positive integers $p_1, p_2 \dots, p_\ell$ satisfying $p_1 \ge p_2 \ge \dots \ge p_\ell$.

If order does matter:

A composition: $n = i_1 + i_2 + \dots + i_\ell$ for positive integers $i_1, i_2 \dots, i_\ell$ with no restrictions.

4	{4	There are 2^{n-1} compositions of n .
3+1	$\begin{cases} 3+1\\ 1+3 \end{cases}$	
2+2	${2+2}$	
2 + 1 + 1	$\begin{cases} 2+1+1\\ 1+2+1\\ 1+1+2 \end{cases}$	
1 + 1 + 1 + 1	${1+1+1+1}$	

Investigate
$$F(x) = 1/(1-x)$$
.
 $H(x) = F(G(x)) = \frac{1}{1-G(x)} =$

Investigate
$$F(x) = 1/(1-x)$$
.
 $H(x) = F(G(x)) = \frac{1}{1-G(x)} = 1 + G(x) + G(x)^2 + G(x)^3 + \cdots$.

Question: Let $F(x) = \sum_{n \ge 0} f_n x^n$ and $G(x) = \sum_{n \ge 0} g_n x^n$. What can we learn about the composition H(x) = F(G(x))?

Investigate
$$F(x) = 1/(1-x)$$
.
 $H(x) = F(G(x)) = \frac{1}{1-G(x)} = 1 + G(x) + G(x)^2 + G(x)^3 + \cdots$.

This is an infinite sum of (likely infinite) power series. Is this OK?
The constant term h₀ of H(x) only makes sense if _____

Question: Let $F(x) = \sum_{n \ge 0} f_n x^n$ and $G(x) = \sum_{n \ge 0} g_n x^n$. What can we learn about the composition H(x) = F(G(x))?

Investigate
$$F(x) = 1/(1-x)$$
.
 $H(x) = F(G(x)) = \frac{1}{1-G(x)} = 1 + G(x) + G(x)^2 + G(x)^3 + \cdots$.

This is an infinite sum of (likely infinite) power series. Is this OK?
The constant term h₀ of H(x) only makes sense if g₀ = 0.

Investigate
$$F(x) = 1/(1-x)$$
.
 $H(x) = F(G(x)) = \frac{1}{1-G(x)} = 1 + G(x) + G(x)^2 + G(x)^3 + \cdots$.

- ▶ This is an infinite sum of (likely infinite) power series. Is this OK?
- The constant term h_0 of H(x) only makes sense if $g_0 = 0$.
- ► This implies that xⁿ divides G(x)ⁿ. Hence, there are at most n-1 summands which contain xⁿ⁻¹. We conclude that the infinite sum makes sense.

Question: Let $F(x) = \sum_{n \ge 0} f_n x^n$ and $G(x) = \sum_{n \ge 0} g_n x^n$. What can we learn about the composition H(x) = F(G(x))?

Investigate
$$F(x) = 1/(1-x)$$
.
 $H(x) = F(G(x)) = \frac{1}{1-G(x)} = 1 + G(x) + G(x)^2 + G(x)^3 + \cdots$.

- ▶ This is an infinite sum of (likely infinite) power series. Is this OK?
- The constant term h_0 of H(x) only makes sense if $g_0 = 0$.
- ► This implies that xⁿ divides G(x)ⁿ. Hence, there are at most n-1 summands which contain xⁿ⁻¹. We conclude that the infinite sum makes sense.

For a general composition with $g_0 = 0$,

$$F(G(x)) = \sum_{n \ge 0} f_n G(x)^n = f_0 + f_1 G(x) + f_2 G(x)^2 + f_3 G(x)^3 + \cdots$$

Interpreting
$$\frac{1}{1-G(x)} = 1 + G(x)^1 + G(x)^2 + G(x)^3 + \cdots$$
:

Recall: The generating function $G(x)^n$ counts sequences of length n of objects (G_1, G_2, \ldots, G_n) , each of type G, and the coefficient $[x^k](G(x)^n)$ counts those *n*-sequences that have total size equal to k.

Interpreting
$$\frac{1}{1-G(x)} = 1 + G(x)^1 + G(x)^2 + G(x)^3 + \cdots$$
:

Recall: The generating function $G(x)^n$ counts sequences of length n of objects (G_1, G_2, \ldots, G_n) , each of type G, and the coefficient $[x^k](G(x)^n)$ counts those *n*-sequences that have total size equal to k.

Conclusion: As long as $g_0 = 0$, then $1 + G(x)^1 + G(x)^2 + G(x)^3 + \cdots$ counts sequences of any length of objects of type G, and the coefficient $[x^k]\frac{1}{1-G(x)}$ counts those that have total size equal to k.

Interpreting
$$\frac{1}{1-G(x)} = 1 + G(x)^1 + G(x)^2 + G(x)^3 + \cdots$$
:

Recall: The generating function $G(x)^n$ counts sequences of length n of objects (G_1, G_2, \ldots, G_n) , each of type G, and the coefficient $[x^k](G(x)^n)$ counts those *n*-sequences that have total size equal to k.

Conclusion: As long as $g_0 = 0$, then $1 + G(x)^1 + G(x)^2 + G(x)^3 + \cdots$ counts sequences of any length of objects of type G, and the coefficient $[x^k]\frac{1}{1-G(x)}$ counts those that have total size equal to k.

Alternatively: Interpret $[x^k]\frac{1}{1-G(x)}$ thinking of k as this *total size*. First, find **all ways** to break down k into integers $i_1 + \cdots + i_{\ell} = k$. Then create **all sequences** of objects of type G in which object j has size i_j .

Interpreting
$$\frac{1}{1-G(x)} = 1 + G(x)^1 + G(x)^2 + G(x)^3 + \cdots$$
:

Recall: The generating function $G(x)^n$ counts sequences of length n of objects (G_1, G_2, \ldots, G_n) , each of type G, and the coefficient $[x^k](G(x)^n)$ counts those *n*-sequences that have total size equal to k.

Conclusion: As long as $g_0 = 0$, then $1 + G(x)^1 + G(x)^2 + G(x)^3 + \cdots$ counts sequences of any length of objects of type G, and the coefficient $[x^k]\frac{1}{1-G(x)}$ counts those that have total size equal to k.

Alternatively: Interpret $[x^k]\frac{1}{1-G(x)}$ thinking of k as this *total size*. First, find **all ways** to break down k into integers $i_1 + \cdots + i_{\ell} = k$. Then create **all sequences** of objects of type G in which object j has size i_j .

Think: A composition of generating functions equals a composition. of. generating. functions.

Example. How many compositions of k are there?

Solution. A composition of k corresponds to a sequence (i_1, \ldots, i_ℓ) of positive integers (of any length) that sums to k.

Example. How many compositions of k are there?

Solution. A composition of k corresponds to a sequence (i_1, \ldots, i_ℓ) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i".

What does size correspond to?

Example. How many compositions of k are there?

Solution. A composition of k corresponds to a sequence (i_1, \ldots, i_ℓ) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i".

What does size correspond to?

How many have value *i*?

Example. How many compositions of k are there?

Solution. A composition of k corresponds to a sequence (i_1, \ldots, i_ℓ) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i".

What does size correspond to?

How many have value *i*? Exactly one: the number *i*.

So the generating function for our objects is $G(x) = 0 + 1x^1 + 1x^2 + 1x^3 + 1x^4 + \dots = _$

Example. How many compositions of k are there?

Solution. A composition of k corresponds to a sequence (i_1, \ldots, i_ℓ) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i".

What does size correspond to?

How many have value *i*? Exactly one: the number *i*.

So the generating function for our objects is $G(x) = 0 + 1x^1 + 1x^2 + 1x^3 + 1x^4 + \cdots =$ _____

We conclude that the generating function for compositions is $H(x) = \frac{1}{1-G(x)} =$

Example. How many compositions of k are there?

Solution. A composition of k corresponds to a sequence (i_1, \ldots, i_ℓ) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i".

What does size correspond to?

How many have value *i*? Exactly one: the number *i*.

So the generating function for our objects is $G(x) = 0 + 1x^1 + 1x^2 + 1x^3 + 1x^4 + \cdots = -$

We conclude that the generating function for compositions is $H(x) = \frac{1}{1-G(x)} =$

So the number of compositions of n is

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of platoons of size (i_1, \ldots, i_ℓ) .

Given *i* soldiers in a platoon, in how many ways can we assign the platoon a leader?

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of platoons of size (i_1, \ldots, i_ℓ) .

Given *i* soldiers in a platoon, in how many ways can we assign the platoon a leader?

Therefore G(x) =

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of platoons of size (i_1, \ldots, i_ℓ) .

Given *i* soldiers in a platoon, in how many ways can we assign the platoon a leader?

Therefore G(x) =

And the generating function for such a military breakdown is

$$H(x) = \frac{1}{1 - G(x)} = \frac{1 - 2x + x^2}{1 - 3x + x^2}$$

Example. How many square-domino tilings are there of a $1 \times n$ board?

Example. How many square-domino tilings are there of a $1 \times n$ board? Solution. A tiling corresponds to a sequence (i_1, \ldots, i_ℓ) , where i_j _____.

Example. How many square-domino tilings are there of a $1 \times n$ board? Solution. A tiling corresponds to a sequence (i_1, \ldots, i_ℓ) , where i_j _____. So G(x) = ______, and therefore H(x) = _____.

Example. How many square-domino tilings are there of a $1 \times n$ board?

Solution. A tiling corresponds to a sequence (i_1, \ldots, i_ℓ) , where i_j _____. So G(x) = ______, and therefore H(x) = _____.

Another way to see this:

	x^0	x^1	x^2	x^3	<i>x</i> ⁴	<i>x</i> ⁵	х ⁶	<i>x</i> ⁷	<i>x</i> ⁸	х ⁹	<i>x</i> ¹⁰	x ¹¹	x^{12}
$G(x)^{0} =$													
$G(x)^{1} =$													
$G(x)^2 =$													
$G(x)^{3} =$													
$G(x)^4 =$													
$G(x)^{5} =$													
$G(x)^6 =$													
1/(1 - G(x)) =													