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There are 2n−1 compositions of n.
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◮ This is an infinite sum of (likely infinite) power series. Is this OK?

◮ The constant term h0 of H(x) only makes sense if g0 = 0.

◮ This implies that xn divides G (x)n.
Hence, there are at most n− 1 summands which contain xn−1.
We conclude that the infinite sum makes sense.

For a general composition with g0 = 0,

F (G (x)) =
∑

n≥0

fnG (x)n = f0 + f1G (x) + f2G (x)2 + f3G (x)3 + · · · .
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counts those n-sequences that have total size equal to k .



Compositions of Generating Functions 94

Compositions. of. Generating Functions.

Interpreting
1

1− G (x)
= 1 + G (x)1 + G (x)2 + G (x)3 + · · · :

Recall: The generating function G (x)n counts sequences of length n of
objects (G1,G2, . . . ,Gn), each of type G , and the coefficient [xk ]

(

G(x)n
)

counts those n-sequences that have total size equal to k .

Conclusion: As long as g0 = 0, then 1 + G (x)1 + G (x)2 + G (x)3 + · · ·

counts sequences of any length of objects of type G , and the
coefficient [xk ] 1

1−G(x) counts those that have total size equal to k .



Compositions of Generating Functions 94

Compositions. of. Generating Functions.

Interpreting
1

1− G (x)
= 1 + G (x)1 + G (x)2 + G (x)3 + · · · :

Recall: The generating function G (x)n counts sequences of length n of
objects (G1,G2, . . . ,Gn), each of type G , and the coefficient [xk ]

(

G(x)n
)

counts those n-sequences that have total size equal to k .

Conclusion: As long as g0 = 0, then 1 + G (x)1 + G (x)2 + G (x)3 + · · ·

counts sequences of any length of objects of type G , and the
coefficient [xk ] 1

1−G(x) counts those that have total size equal to k .

Alternatively: Interpret [xk ] 1
1−G(x) thinking of k as this total size.

First, find all ways to break down k into integers i1 + · · ·+ iℓ = k .
Then create all sequences of objects of type G in which
object j has size ij .



Compositions of Generating Functions 94

Compositions. of. Generating Functions.

Interpreting
1

1− G (x)
= 1 + G (x)1 + G (x)2 + G (x)3 + · · · :

Recall: The generating function G (x)n counts sequences of length n of
objects (G1,G2, . . . ,Gn), each of type G , and the coefficient [xk ]

(

G(x)n
)

counts those n-sequences that have total size equal to k .

Conclusion: As long as g0 = 0, then 1 + G (x)1 + G (x)2 + G (x)3 + · · ·

counts sequences of any length of objects of type G , and the
coefficient [xk ] 1

1−G(x) counts those that have total size equal to k .

Alternatively: Interpret [xk ] 1
1−G(x) thinking of k as this total size.

First, find all ways to break down k into integers i1 + · · ·+ iℓ = k .
Then create all sequences of objects of type G in which
object j has size ij .

Think: A composition of generating functions equals
a composition. of. generating. functions.
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So the number of compositions of n is
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Example. How many ways are there to take a line of k soldiers,
divide the line into non-empty platoons, and from each platoon
choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of
platoons of size (i1, . . . , iℓ).

Given i soldiers in a platoon, in how many ways can we assign the
platoon a leader?

Therefore G (x) =

And the generating function for such a military breakdown is

H(x) =
1

1− G (x)
=

1− 2x + x2

1− 3x + x2
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Example. How many square-domino tilings are there of a 1× n board?

Solution. A tiling corresponds to a sequence (i1, . . . , iℓ),
where ij .

So G (x) = , and therefore H(x) = .

Another way to see this:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

G(x)0 =
G(x)1 =
G(x)2 =
G(x)3 =
G(x)4 =
G(x)5 =
G(x)6 =

1/(1− G(x)) =
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