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◮ What is the distribution of the statistics?

◮ What is the average size of an object in the set?

◮ Which statistics have the same distribution?

◮ Insight into their structure.
◮ Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.

Representations of permutations

One-line notation: π = 416 2 5 3 Cycle notation: π = (1 4 2)(3 6)(5)
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Example. When π = 416253, des(π) = 3 since 4ց 1, 6ց 2, 5ց 3.

Question: How many n-permutations have d descents?
des(12) = 0 des(123) = des(213) = des(312) =
des(21) = 1 des(132) = des(231) = des(321) =

n\d 0 1 2 3 4

1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1

What are the possible values for des(π)?

Note the symmetry. If π has d descents,
its reverse π̂ has descents.

These are the Eulerian numbers.
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n\i 0 1 2 3 4 5 6
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3 1 2 2 1
4 1 3 5 6 5 3 1

What are the possible values for
inv(π)?

The inversion number is a good
way to count how “far away” a
permutation is from the identity.
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Example. When π = 416253, maj(π) = 9 since
the descents of π are in positions 1, 3, and 5.

maj(12) = 0 maj(123) = maj(213) = maj(312) =
maj(21) = 1 maj(132) = maj(231) = maj(321) =

n\m 0 1 2 3 4 5 6

1 1
2 1 1
3 1 2 2 1
4 1 3 5 6 5 3 1

What are the possible values for
maj(π)?

The distribution of maj(π)
IS THE SAME AS

the distribution of inv(π)!

A statistic that has the same distribution as inv is called Mahonian.
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that limq→1 f (q) = c .

Example.
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=

(

1 + q + q2 + · · ·+ qn−2 + qn−1
)

is a

q-analog of n because limq→1
1−qn

1−q
= n.

We write [n]q = 1−qn

1−q
.

q-analogs work hand in hand with combinatorial statistics.

If stat is a combinatorial statistic on a set S (stat : S 7→ N),

then
∑

s∈S

qstat(s) is a q-analog of |S | because

lim
q→1

∑

s∈S

qstat(s) =
∑

s∈S

1stat(s) =
∑

s∈S

1 = |S |
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∑

π∈Sn
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n
∑

π∈Sn
qinv(π)

1 1q0 = 1
2 1q0 + 1q1 = (1 + q)
3 1q0 + 2q1 + 2q2 + 1q3 = (1 + q + q2)(1 + q)
4 1q0 + 3q1 + 5q2 + 6q3 + 5q4 + 3q5 + 1q6=

Conjecture:
∑

π∈Sn
qinv(π) =[n]q · · · [1]q =: [n]q!, the q-factorial.

Claim: This equation makes sense when q = 1.
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{

lists (a1, . . . , an)
where 0 ≤ ai ≤ n − i

}
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Inversion Statistics

Theorem:
∑

π∈Sn
qinv(π) = [n]q!

Proof. There exists a bijection
{

permutations
π ∈ Sn

}

←→

{

lists (a1, . . . , an)
where 0 ≤ ai ≤ n − i

}

.

Given a permutation π, create its inversion table. Define ai to be
the number of entries j to the left of i that are smaller than i .
Then inv(π) = a1 + a2 + · · ·+ an.

Example. The inversion table of π = 431 5 2 is (3, 2, 0, 1, 0).

∑

π∈Sn

qinv(π) =
n−1
∑

a1=0

n−2
∑

a2=0

· · ·
0

∑

an=0

qa1+a2+···+an

=

( n−1
∑

a1=0

qa1
)( n−2

∑

a2=0

qa2
)

· · ·

( 0
∑

an=0

qan
)

= [n]q [n − 1]q · · · [1]q = [n]q!
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We said that inv and maj are equidistributed. Two possible proofs:

◮ Find a bijection f : Sn → Sn such that maj(π) = inv(f (π)).

◮ Or prove
∑

π∈Sn

qinv(π) =
∑

π∈Sn

qmaj(π)
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Notes

We said that inv and maj are equidistributed. Two possible proofs:

◮ Find a bijection f : Sn → Sn such that maj(π) = inv(f (π)).

◮ Or prove
∑
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π∈Sn

qmaj(π)
.

With a q-analog of factorials, we can define a q-analog of binomial
coefficients. Define

[
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]

q

=
[n]q!

[k]q![n − k]q!
.

These polynomials are called the q-binomial coefficients or
Gaussian polynomials.

◮ limq→1

[

n
k

]

q
=

(

n
k

)

.

◮ They are indeed polynomials.

◮ Example.
[4
2

]

q
= 1 + q + 2q2 + q3 + q4

Combinatorial interpretations of q-binomial coefficients!
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Combinatorial interpretations of q-binomial coefficients

Consider set Sk,n−k of permutations of the multiset {1k , 2n−k}.
Define inv(π) = |{i < j : π(i) > π(j)}|.

Example. π = 112 2 1 2 1 1 2 2 is a permutation of {15, 25}.
Then inv(π) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8.
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Combinatorial interpretations of q-binomial coefficients

Consider set Sk,n−k of permutations of the multiset {1k , 2n−k}.
Define inv(π) = |{i < j : π(i) > π(j)}|.

Example. π = 112 2 1 2 1 1 2 2 is a permutation of {15, 25}.
Then inv(π) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8.

Then
∑

π∈Sk,n−k
qinv(π) =

[

n
k

]

q
. (Note |Sk,n−k | =

(

n
k

)

.)

This is a refinement of these permutations in terms of inversions.
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Combinatorial interpretations of q-binomial coefficients

Consider set Sk,n−k of permutations of the multiset {1k , 2n−k}.
Define inv(π) = |{i < j : π(i) > π(j)}|.
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.)

This is a refinement of these permutations in terms of inversions.

Consider the set P of lattice paths from (0, 0) to (a, b).
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Consider the set P of lattice paths from (0, 0) to (a, b).
Let area(P) be the area above a path P .
Then

∑

P∈P qarea(P) =
[

a+b
a

]

q
. (Note |P| =

(

a+b
a

)

.)



q-analogs 124

Combinatorial interpretations of q-binomial coefficients

Consider set Sk,n−k of permutations of the multiset {1k , 2n−k}.
Define inv(π) = |{i < j : π(i) > π(j)}|.

Example. π = 112 2 1 2 1 1 2 2 is a permutation of {15, 25}.
Then inv(π) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8.

Then
∑

π∈Sk,n−k
qinv(π) =

[

n
k

]

q
. (Note |Sk,n−k | =

(

n
k

)

.)

This is a refinement of these permutations in terms of inversions.

Consider the set P of lattice paths from (0, 0) to (a, b).
Let area(P) be the area above a path P .
Then

∑

P∈P qarea(P) =
[

a+b
a

]

q
. (Note |P| =

(

a+b
a

)

.)

This can also be used to give a q-analog of the Catalan numbers.
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There’s always more to learn!!!
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