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Counting integral solutions

Question: How many non-negative integer solutions are there of
x1 + x2 + x3 + x4 = 10?

◮ Give some examples of solutions.

◮ Characterize what solutions look like.

◮ A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to
x1 + x2 + · · ·+ xn = k is .

Question: How many positive integer solutions are there of
x1 + x2 + x3 + x4 = 10, where x4 ≥ 3?
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The sum principle

Often it makes sense to break down your counting problem into
smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

◮ Length 1: ◮ Length 4:

◮ Length 2: ◮ Length 5,6:

◮ Length 3: ◮ Total:

⋆ Every palindrome between 1 and 999999 is counted once.

This illustrates the sum principle:

Suppose the objects to be counted can be broken into k disjoint
and exhaustive cases. If there are nj objects in case j , then there
are n1 + n2 + · · ·+ nk objects in all.
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Counting pitfalls

When counting, there are two common pitfalls:

◮ Undercounting

◮ Often, forgetting cases when applying the sum principle.
◮ Ask: Did I miss something?

◮ Overcounting

◮ Often, misapplying the product principle.
◮ Ask: Do cases need to be counted in different ways?
◮ Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.

There are four suits: Diamond ♦, Heart ♥, Club ♣, Spade ♠.
Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Example. Suppose you are dealt two diamonds between 2 and 10.
In how many ways can the product be even?
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face-up card be a Heart ♥?

Answer: There are aces, so there are choices for the down card.
There are hearts, so there are choices for the up card.
By the product principle, there are 52 ways in all.

Except:

Remember to ask: Do cases need to be counted in different ways?
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—Compare this to—

Q2: How many 4-lists taken from [9] have no pairs
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Strategy: It is sometimes easier to count the complement.
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Answer to Q2:
Answer to Q1:
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Poker hands

Example. When playing five-card poker, what is the probability
that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

◮ Count the total number of hands.

◮ Count the number of possible full houses. # of ways

◮ Choose the denomination of the three-of-a-kind.
◮ Choose which three suits they are in.
◮ Choose the denomination of the pair.
◮ Choose which two suits they are in.
◮ Apply the multiplication principle. Total:

◮ Divide to find the probability.
3744

2598960
≈ 0.14%
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Pascal’s identity gives us the recurrence
(

n
k

)

=
(

n−1
k

)

+
(

n−1
k−1

)

.

With initial conditions we can calculate
(

n
k

)

for all n and k .
(

n
0

)

= 1 and
(

n
n

)

= 1 for all n.

n\
k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 1

Seq’s in Pascal’s triangle:

1, 2, 3, 4, 5, . . .
(

n
1

)

(an = n)
1, 3, 6, 10, 15, . . .

(

n
2

)

triangular
1, 4, 10, 20, 35, . . .

(

n
3

)

tetrahedral

1, 2, 6, 20, 70, . . .
(

2n
n

)
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Pascal’s triangle

Pascal’s identity gives us the recurrence
(

n
k

)

=
(

n−1
k

)

+
(

n−1
k−1

)

.

With initial conditions we can calculate
(

n
k

)

for all n and k .
(

n
0

)

= 1 and
(

n
n

)

= 1 for all n.

n\
k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 1

Seq’s in Pascal’s triangle:

1, 2, 3, 4, 5, . . .
(

n
1

)

(an = n) A000027
1, 3, 6, 10, 15, . . .

(

n
2

)

triangular A000217
1, 4, 10, 20, 35, . . .

(

n
3

)

tetrahedral A000292

1, 2, 6, 20, 70, . . .
(

2n
n

)

centr. binom. A000984

Online Encyclopedia of Integer Sequences:
http://oeis.org/

http://oeis.org/
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Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y ,

(x + y)n = xn +
(

n
1

)

xn−1y + · · ·+
(

n
n−1

)

xyn−1 + yn.

Rewrite in summation notation!
Determine the generic term [

(

n
k

)

x y ] and the bounds on k

(x + y)n =
∑

◮ The entries of Pascal’s triangle are the coefficients of terms in
the expansion of (x + y)n.

Proof. In the expansion of (x + y)(x + y) · · · (x + y), in how many
ways can a term have the form xn−kyk?

From the n factors (x + y), you must choose a “y” exactly k times.
Therefore,

(

n
k

)

ways. We recover the desired equation. �
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