Question: In how many ways can we place k objects in n boxes?

Question: In how many ways can we place k objects in n boxes? Answer: It depends.

Question: In how many ways can we place k objects in n boxes?

Answer: It depends.

- ▶ What do the objects look like?
 - ▶ Do the objects all look the same?

Question: In how many ways can we place k objects in n boxes?

Answer: It depends.

- What do the objects look like?
 - ▶ Do the objects all look the same?
- ▶ What do the boxes look like?
 - ▶ Do the boxes all look the same?

Question: In how many ways can we place k objects in n boxes?

Answer: It depends.

- ▶ What do the objects look like?
 - Do the objects all look the same?
- ▶ What do the boxes look like?
 - ▶ Do the boxes all look the same?
- ► Are there any restrictions?
 - ▶ Is there a size limit?
 - ▶ Must there be an object in each box?

Definition: A distribution is an assignment of objects to recipients.

Certain counting problems can be revisited in this framework:

$$\left\{ \begin{array}{l} \text{Five-letter passwords} \\ \text{on } \left\{ A,B,C,D,E,F,G \right\} \end{array} \right\} \text{ correspond to } \left\{ \begin{array}{l} \text{Distributions of} \\ \underline{\quad \quad \text{distinct objects}} \\ \text{into } \underline{\quad \quad \text{distinct boxes}} \end{array} \right\}$$

Definition: A distribution is an assignment of objects to recipients.

Certain counting problems can be revisited in this framework:

$$\left\{ \begin{array}{l} \text{Five-letter passwords} \\ \text{on } \left\{ A,B,C,D,E,F,G \right\} \end{array} \right\} \text{ correspond to } \left\{ \begin{array}{l} \text{Distributions of} \\ \underline{\quad \quad } \text{ distinct objects} \\ \text{into } \underline{\quad \quad } \text{ distinct boxes} \end{array} \right\}$$

What are candidates for objects, boxes?

Definition: A distribution is an assignment of objects to recipients.

Certain counting problems can be revisited in this framework:

$$\left\{ \begin{array}{l} \text{Five-letter passwords} \\ \text{on } \left\{ A,B,C,D,E,F,G \right\} \end{array} \right\} \text{ correspond to } \left\{ \begin{array}{l} \text{Distributions of} \\ \underline{\quad \quad \text{distinct objects}} \\ \text{into } \underline{\quad \quad \text{distinct boxes}} \end{array} \right\}$$

- What are candidates for objects, boxes?
- ▶ View as a function

Definition: A distribution is an assignment of objects to recipients.

Certain counting problems can be revisited in this framework:

$$\left\{ \begin{array}{l} \text{Five-letter passwords} \\ \text{on } \left\{ A,B,C,D,E,F,G \right\} \end{array} \right\} \text{ correspond to } \left\{ \begin{array}{l} \text{Distributions of} \\ \underline{\quad \quad } \text{ distinct objects} \\ \text{into } \underline{\quad \quad } \text{ distinct boxes} \end{array} \right\}$$

- What are candidates for objects, boxes?
- View as a function

▶ View as a distribution

Definition: A distribution is an assignment of objects to recipients.

Certain counting problems can be revisited in this framework:

- What are candidates for objects, boxes?
- View as a function

- ▶ View as a distribution
- ▶ Find the restriction

Question: In how many ways can we place k objects in n boxes?

Distribut	tions of	Restrictions on # objects receive		eceived	
k objects	k objects n boxes		≤ 1	≥ 1	=1
distinct	distinct				
identical	distinct				
distinct	identical				
identical	identical				

Question: In how many ways can we place k objects in n boxes?

Distribut	ions of	Restrictions on # objects received			eceived
k objects	n boxes	none	≤ 1	≥ 1	=1
distinct	distinct				
identical	distinct				
distinct	identical				
identical	identical				

Question: In how many ways can we place k objects in n boxes?

Distribut	tions of	Restrictions on # objects receive		eceived	
k objects n boxes		none	≤ 1	≥ 1	=1
distinct	distinct	n ^k	$(n)_k$		
identical	distinct				
distinct	identical				
identical	identical				

- \triangleright n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.

Question: In how many ways can we place k objects in n boxes?

Distribut	ions of	Restrictions on # objects receive		eceived	
k objects n boxes		none	≤ 1	≥ 1	=1
distinct	distinct	n ^k	$(n)_k$		
identical	distinct				
distinct	identical				
identical	identical				

- \triangleright n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- ▶ n!: Permutations. What about when $n \neq k$?

Question: In how many ways can we place k objects in n boxes?

Distribut	ions of	Restrictions on # objects receive		eceived	
k objects n boxes		none	≤ 1	≥ 1	=1
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0
identical	distinct				
distinct	identical				
identical	identical				

- \triangleright n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- ▶ n!: Permutations. What about when $n \neq k$?

Question: In how many ways can we place k objects in n boxes?

Distribut	ions of	Restrictions on # objects received		eceived	
k objects n boxes		none	≤ 1	≥ 1	=1
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0
identical	distinct				
distinct	identical				
identical	identical				

- \triangleright n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- ▶ n!: Permutations. What about when $n \neq k$?
- \blacktriangleright $\binom{n}{k}$: Objects _____, Boxes _____, ____.
- \blacktriangleright $\binom{n}{k}$: Objects _____, Boxes _____,

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on # objects received			
k objects n boxes		none	≤ 1	≥ 1	=1
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$		
distinct	identical				
identical	identical				

- \triangleright n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- ▶ n!: Permutations. What about when $n \neq k$?
- \blacktriangleright $\binom{n}{k}$: Objects _____, Boxes _____, ____.
- \blacktriangleright $\binom{n}{k}$: Objects _____, Boxes _____,

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on # objects received					
k objects	k objects n boxes		n boxes none		≤ 1	≥ 1	=1
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0		
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$				
distinct	identical						
identical	identical						

We can also fill in these answers:

- ▶ Objects identical, Boxes distinct, ≥ 1 object per box:
- ▶ Objects identical, Boxes distinct, = 1 object per box:

Question: In how many ways can we place k objects in n boxes?

Distribut	ions of	Restrictions on # objects received			eceived
k objects	k objects n boxes		≤ 1	≥ 1	=1
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical				
identical	identical				

We can also fill in these answers:

▶ Objects identical, Boxes distinct, ≥ 1 object per box:

▶ Objects identical, Boxes distinct, = 1 object per box:

Distinct objects in indistinguishable boxes

When placing *k* distinguishable objects into *n* indistinguishable boxes, what matters?

Distinct objects in indistinguishable boxes

When placing k distinguishable objects into n indistinguishable boxes, what matters?

- ► Each object needs to be in some box.
- No object is in two boxes.

We have rediscovered _____

Distinct objects in indistinguishable boxes

When	placing k disting	guishable	objects	ınto <i>n</i>	ındıstınguishable	
boxes,	what matters?					

- ► Each object needs to be in some box.
- No object is in two boxes.

We have rediscovered	

So ask "How many set partitions are there of a set with k objects?" Or even, "How many set partitions are there of k objects into n parts?"

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i non-empty subsets.

Notation: S(k,i) or $\binom{k}{i}$. \leftarrow Careful about this order!

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i non-empty subsets.

Notation: S(k,i) or $\binom{k}{i}$. \leftarrow Careful about this order!

k	${k \brace 0}{k \brace 1}$	$\binom{k}{2}$	$\binom{k}{3}$	${k \brace 4}$	${k \brace 5}$	$\binom{k}{6}$	$\binom{k}{7}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i non-empty subsets.

Notation: S(k,i) or $\binom{k}{i}$. \leftarrow Careful about this order!

k	${k \brace 0}{k \brack 1}$	$\binom{k}{2}$	$\binom{k}{3}$	$\binom{k}{4}$	${k \brace 5}$	$\binom{k}{6}$	$\binom{k}{7}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle:

$$S(k,1) = S(k,k) = 1.$$

 $S(k,2) = 2^{k-1} - 1.$

$$S(k, k-1) = \binom{k}{2}$$
.

Later: Formula for S(k, i).

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i non-empty subsets.

Notation: S(k,i) or $\binom{k}{i}$. \leftarrow Careful about this order!

k	${k \brace 0}{k \brack 1}$	$\binom{k}{2}$	$\binom{k}{3}$	$\binom{k}{4}$	${k \brace 5}$	${k \brace 6}$	${k \brace 7}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle:

$$S(k,1) = S(k,k) = 1.$$

 $S(k,2) = 2^{k-1} - 1.$

$$S(k, k-1) = {k \choose 2}.$$

Later: Formula for S(k, i).

To fill in the table, find a recurrence for S(k, i):

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i non-empty subsets.

Notation: S(k,i) or $\binom{k}{i}$. \leftarrow Careful about this order!

k	$\binom{k}{0} \binom{k}{1}$	$\binom{k}{2}$	$\binom{k}{3}$	$\binom{k}{4}$	${k \brace 5}$	$\binom{k}{6}$	$\binom{k}{7}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle:

$$S(k,1) = S(k,k) = 1.$$

 $S(k,2) = 2^{k-1} - 1.$
 $S(k,k-1) = {k \choose 2}.$

Later: Formula for S(k, i).

To fill in the table, find a recurrence for S(k, i):

Ask: In how many ways can we place k objects into i boxes? We'll condition on the placement of element #i:

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical					
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on # objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical			S(k, n)		
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on # objects received				
k objects	n boxes	none	≤ 1	≥ 1	=1	
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical			S(k, n)		
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes. What if we then label the boxes?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on # objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical			S(k, n)		
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

(Note that here we have counted onto functions $[k] \rightarrow [n]$.)

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on # objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical			S(k, n)		
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

(Note that here we have counted onto functions $[k] \rightarrow [n]$.)

How many ways to distribute distinct objects into identical boxes:

▶ If there is exactly one item in each box?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical			S(k, n)	1 or 0	
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

(Note that here we have counted onto functions $[k] \rightarrow [n]$.)

How many ways to distribute distinct objects into identical boxes:

- ▶ If there is exactly one item in each box?
- ▶ If there is at most one item in each box?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on # objects received				
k objects	n boxes	none	≤ 1	<u>≥</u> 1	= 1	
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical		1 or 0	S(k, n)	1 or 0	
identical	identical					
			I			

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

(Note that here we have counted onto functions $[k] \rightarrow [n]$.)

How many ways to distribute distinct objects into identical boxes:

- ▶ If there is exactly one item in each box?
- ▶ If there is at most one item in each box?
- ▶ What about with no restrictions?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on # objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical	$\sum S(k,i)$	1 or 0	S(k,n)	1 or 0	
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

(Note that here we have counted onto functions $[k] \rightarrow [n]$.)

How many ways to distribute distinct objects into identical boxes:

- ▶ If there is exactly one item in each box?
- ▶ If there is at most one item in each box?
- ▶ What about with no restrictions? $(n \ge k \rightsquigarrow \text{Bell number } B_k)$

Bell numbers

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$$
.

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$$
.

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$$
.

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

$$B_{\mathbf{k}} = \binom{k-1}{0} B_0 + \binom{k-1}{1} B_1 + \dots + \binom{k-1}{k-1} B_{k-1}.$$

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$$
.

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

$$B_k = \binom{k-1}{0} B_0 + \binom{k-1}{1} B_1 + \dots + \binom{k-1}{k-1} B_{k-1}.$$

Proof: How many partitions of $\{1, ..., k\}$ are there?

LHS: B_k , obviously.

RHS:

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$$
.

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

$$B_k = \binom{k-1}{0} B_0 + \binom{k-1}{1} B_1 + \dots + \binom{k-1}{k-1} B_{k-1}.$$

Proof: How many partitions of $\{1, ..., k\}$ are there?

LHS: B_k , obviously.

RHS: Condition on the box containing the last element k: How many partitions of [k] contain i elements in the box with k?

When placing k indistinguishable objects into n indistinguishable boxes, what matters?

When placing k indistinguishable objects into n indistinguishable boxes, what matters?

 \blacktriangleright We are partitioning the **integer** k instead of the **set** [k].

Example. What are the partitions of 6?

When placing k indistinguishable objects into n indistinguishable boxes, what matters?

 \blacktriangleright We are partitioning the **integer** k instead of the **set** $\lfloor k \rfloor$.

Example. What are the partitions of 6?

Definition: P(k, i) is the number of partitions of k into i parts. Example. We saw P(6, 1) = 1, P(6, 2) = 3, P(6, 3) = 3, P(6, 4) = 2, P(6, 5) = 1, and P(6, 6) = 1.

When placing k indistinguishable objects into n indistinguishable boxes, what matters?

 \blacktriangleright We are partitioning the **integer** k instead of the **set** $\lfloor k \rfloor$.

Example. What are the partitions of 6?

Definition: P(k, i) is the number of partitions of k into i parts.

Example. We saw P(6,1) = 1, P(6,2) = 3, P(6,3) = 3, P(6,4) = 2, P(6,5) = 1, and P(6,6) = 1.

Definition: P(k) is the number of partitions of k into any number of parts.

Example. P(6) = 1 + 3 + 3 + 2 + 1 + 1 = 11.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	=1	
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical	$\sum S(k,i)$	1 or 0	S(k,n)	1 or 0	
identical	identical					

P(k, n) counts ways to place k identical obj. into n identical boxes.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical	$\sum S(k,i)$	1 or 0	S(k,n)	1 or 0	
identical	identical			P(k, n)		

P(k, n) counts ways to place k identical obj. into n identical boxes.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on # objects received				
k objects	n boxes	none	≤ 1	≥ 1	=1	
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical	$\sum S(k,i)$	1 or 0	S(k,n)	1 or 0	
identical	identical			P(k, n)		

P(k, n) counts ways to place k identical obj. into n identical boxes.

How many ways to distribute identical objects into identical boxes:

▶ If there is exactly one item in each box?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	=1	
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical	$\sum S(k,i)$	1 or 0	S(k,n)	1 or 0	
identical	identical			P(k, n)	1 or 0	

P(k, n) counts ways to place k identical obj. into n identical boxes.

How many ways to distribute identical objects into identical boxes:

- ▶ If there is exactly one item in each box?
- ▶ If there is at most one item in each box?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none	≤ 1	≥ 1	= 1
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k,i)$	1 or 0	S(k,n)	1 or 0
identical	identical		1 or 0	P(k, n)	1 or 0

P(k, n) counts ways to place k identical obj. into n identical boxes.

How many ways to distribute identical objects into identical boxes:

- ▶ If there is exactly one item in each box?
- ▶ If there is at most one item in each box?
- ▶ What about with no restrictions?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on # objects received				
k objects	n boxes	none	≤ 1	≥ 1	=1	
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical	$\sum S(k,i)$	1 or 0	S(k,n)	1 or 0	
identical	identical	$\sum P(k,i)$	1 or 0	P(k, n)	1 or 0	

P(k, n) counts ways to place k identical obj. into n identical boxes.

How many ways to distribute identical objects into identical boxes:

- ▶ If there is exactly one item in each box?
- ▶ If there is at most one item in each box?
- ▶ What about with no restrictions?

(This is the # of integer partitions of k into at most n parts.)