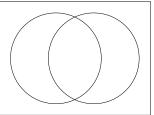
Example. Suppose that in this class, 14 students play soccer and 11 students play basketball. How many students play a sport? Solution.

Example. Suppose that in this class, 14 students play soccer and 11 students play basketball. How many students play a sport? *Solution*.

Let S be the set of students who play soccer and B be the set of students who play basketball.

Then,
$$|S \cup B| = |S| + |B|$$



When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are pairwise disjoint, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are pairwise disjoint, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are pairwise disjoint, we have $|A| = |A_1| + \cdots + |A_k|$.

$$|A_1 \cup A_2| = |A_1| + |A_2|$$
 $-|A_1 \cap A_2|$

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are pairwise disjoint, we have $|A| = |A_1| + \cdots + |A_k|$.

$$|A_1 \cup A_2| = |A_1| + |A_2|$$
 $-|A_1 \cap A_2|$

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are pairwise disjoint, we have $|A| = |A_1| + \cdots + |A_k|$.

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3|$$

$$- |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

$$|A_1 \cup \cdots \cup A_m| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots$$

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are pairwise disjoint, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ and the A_i are **not** pairwise disjoint, we must apply the principle of inclusion-exclusion to determine |A|:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3|$$

$$- |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

$$|A_1 \cup \cdots \cup A_m| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots$$

It may be more convenient to apply inclusion/exclusion where the A_i are *forbidden* subsets of \mathcal{U} , in which case _____

The key to using the principle of inclusion-exclusion is determining the right choice of A_i . The A_i and their intersections should be easy to count and easy to characterize.

The key to using the principle of inclusion-exclusion is determining the right choice of A_i . The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1 p_2 \cdots p_n$ is the one-line notation for a permutation of [n] whose first element is p_1 , second element is p_2 , etc.

Example. How many permutations $p = p_1 p_2 \cdots p_n$ are there in which at least one of p_1 and p_2 are even?

The key to using the principle of inclusion-exclusion is determining the right choice of A_i . The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1 p_2 \cdots p_n$ is the one-line notation for a permutation of [n] whose first element is p_1 , second element is p_2 , etc.

Example. How many permutations $p = p_1 p_2 \cdots p_n$ are there in which at least one of p_1 and p_2 are even?

Solution. Let \mathcal{U} be the set of *n*-permutations.

Let A_1 be the set of permutations where p_1 is even.

Let A_2 be the set of permutations where p_2 is even.

In words, $A_1 \cap A_2$ is the set of *n*-permutations ____

The key to using the principle of inclusion-exclusion is determining the right choice of A_i . The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1 p_2 \cdots p_n$ is the one-line notation for a permutation of [n] whose first element is p_1 , second element is p_2 , etc.

Example. How many permutations $p = p_1 p_2 \cdots p_n$ are there in which at least one of p_1 and p_2 are even?

Solution. Let $\mathcal U$ be the set of *n*-permutations.

Let A_1 be the set of permutations where p_1 is even.

Let A_2 be the set of permutations where p_2 is even.

In words, $A_1 \cap A_2$ is the set of *n*-permutations _____

Now calculate:
$$|A_1| = |A_2| = |A_1 \cap A_2| = |A_1 \cap A_2|$$

The key to using the principle of inclusion-exclusion is determining the right choice of A_i . The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1 p_2 \cdots p_n$ is the one-line notation for a permutation of [n] whose first element is p_1 , second element is p_2 , etc.

Example. How many permutations $p = p_1 p_2 \cdots p_n$ are there in which at least one of p_1 and p_2 are even?

Solution. Let \mathcal{U} be the set of *n*-permutations.

Let A_1 be the set of permutations where p_1 is even.

Let A_2 be the set of permutations where p_2 is even.

In words, $A_1 \cap A_2$ is the set of *n*-permutations _____

Now calculate:
$$|A_1| = |A_2| = |A_1 \cap A_2| = |A_1 \cap A_2|$$

Applying PIE: So
$$|A_1 \cup A_2| =$$

Example. Find the number of integers between 1 and 1000 that are **not** divisible by 5, 6, or 8.

Example. Find the number of integers between 1 and 1000 that are **not** divisible by 5, 6, or 8.

Solution. Let $\mathcal{U}=\{n\in\mathbb{Z} \text{ such that } 1\leq n\leq 1000\}$. Let $A_1\subset\mathcal{U}$ be the multiples of 5, $A_2\subset\mathcal{U}$ be the multiples of 6, and $A_3\subset\mathcal{U}$ be the multiples of 8. We want $|\mathcal{U}|-|A_1\cup A_2\cup A_3|$.

Example. Find the number of integers between 1 and 1000 that are **not** divisible by 5, 6, or 8.

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000\}$. Let $A_1 \subset \mathcal{U}$ be the multiples of 5, $A_2 \subset \mathcal{U}$ be the multiples of 6, and $A_3 \subset \mathcal{U}$ be the multiples of 8. We want $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3|$.

In words, $A_1 \cap A_2$ is the set of integers

Example. Find the number of integers between 1 and 1000 that are **not** divisible by 5, 6, or 8.

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000\}$. Let $A_1 \subset \mathcal{U}$ be the multiples of 5, $A_2 \subset \mathcal{U}$ be the multiples of 6, and $A_3 \subset \mathcal{U}$ be the multiples of 8. We want $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3|$.

In words, $A_1 \cap A_2$ is the set of integers $A_1 \cap A_3$ is $A_2 \cap A_3$ is

and $A_1 \cap A_2 \cap A_3$ is the set of integers that are

Example. Find the number of integers between 1 and 1000 that are **not** divisible by 5, 6, or 8.

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000\}$. Let $A_1 \subset \mathcal{U}$ be the multiples of 5, $A_2 \subset \mathcal{U}$ be the multiples of 6, and $A_3 \subset \mathcal{U}$ be the multiples of 8. We want $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3|$.

In words, $A_1 \cap A_2$ is the set of integers $A_1 \cap A_3$ is $A_2 \cap A_3$ is and $A_1 \cap A_2 \cap A_3$ is the set of integers that are

Now calculate:
$$|A_1| = |A_2| = |A_3| = |A_1 \cap A_2| = |A_1 \cap A_3| = |A_1 \cap A_2 \cap A_3| = |A_1 \cap A_2 \cap A_3| = |A_1 \cap A_2 \cap A_3| = |A_2 \cap A_3| = |A_1 \cap A_2 \cap A_3| = |A_2 \cap A_3| = |A_1 \cap A_2 \cap A_3| = |A_2 \cap A_3| = |A_3 \cap A_3| = |$$

And finally: So $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3| =$

Quick review

1. How many ways are there to choose k elements out of the set $\{1 \cdot a_1, 1 \cdot a_2, \cdots, 1 \cdot a_n\}$?

Quick review

- 1. How many ways are there to choose k elements out of the set $\{1 \cdot a_1, 1 \cdot a_2, \cdots, 1 \cdot a_n\}$?
- 2. How many ways are there to choose k elements out of the set $\{k \cdot a_1, k \cdot a_2, \cdots, k \cdot a_n\}$? (really $\{\infty \cdot a_1, \infty \cdot a_2, \cdots, \infty \cdot a_n\}$)

Quick review

- 1. How many ways are there to choose k elements out of the set $\{1 \cdot a_1, 1 \cdot a_2, \cdots, 1 \cdot a_n\}$?
- 2. How many ways are there to choose k elements out of the set $\{k \cdot a_1, k \cdot a_2, \cdots, k \cdot a_n\}$? (really $\{\infty \cdot a_1, \infty \cdot a_2, \cdots, \infty \cdot a_n\}$)

What we would like to calculate is:

In how many ways can we choose k elements out of an arbitrary multiset?

Now, it's as easy as PIE.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that <u>violate</u> the conditions of S

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let $\mathcal U$ be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S

Define A_1 to be 10-combs that include at least $\underline{\hspace{1cm}}$ a's.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that <u>violate</u> the conditions of S

Define A_1 to be 10-combs that include at least ___ a's.

Define A_2 to be 10-combs that include at least <u>b</u>'s.

Define A_3 to be 10-combs that include at least <u>c</u>'s.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that <u>violate</u> the conditions of S

Define A_1 to be 10-combs that include at least $\underline{}$ a's. Define A_2 to be 10-combs that include at least $\underline{}$ b's.

Define A_3 to be 10-combs that include at least <u>c</u>'s.

In words, $A_1 \cap A_2$ are those 10-combs that $A_1 \cap A_3$: $A_2 \cap A_3$:

 $A_1 \cap A_2 \cap A_3$

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that <u>violate</u> the conditions of S

Define A_1 to be 10-combs that include at least ___ a's. Define A_2 to be 10-combs that include at least ___ b's.

Define A_3 to be 10-combs that include at least <u>c</u>'s.

In words, $A_1 \cap A_2$ are those 10-combs that $A_1 \cap A_3$: $A_2 \cap A_3$:

 $A_1 \cap A_2 \cap A_3$

Now calculate: $|\mathcal{U}| = |A_1| =$

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S

Define A_1 to be 10-combs that include at least $\underline{\hspace{0.2cm}}$ a's. Define A_2 to be 10-combs that include at least $\underline{\hspace{0.2cm}}$ b's. Define A_3 to be 10-combs that include at least $\underline{\hspace{0.2cm}}$ c's.

In words, $A_1 \cap A_2$ are those 10-combs that $A_1 \cap A_3$: $A_2 \cap A_3$: $A_1 \cap A_2 \cap A_3$

Now calculate: $|\mathcal{U}| = |A_1| = |A_2| = \binom{3}{5}$ $|A_3| = \binom{3}{4}$ $|A_1 \cap A_2| = 3$ $|A_1 \cap A_3| = 1$ $|A_2 \cap A_3| = 0$ $|A_1 \cap A_2 \cap A_3| = 0$

And finally: So $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3| =$

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.

Definition: An *n*-derangement is an *n*-permutation $\pi = p_1 p_2 \cdots p_n$ such that $p_1 \neq 1$, $p_2 \neq 2$, \cdots , $p_n \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i) = i$.

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.

Definition: An *n*-derangement is an *n*-permutation $\pi = p_1 p_2 \cdots p_n$ such that $p_1 \neq 1$, $p_2 \neq 2$, \cdots , $p_n \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i) = i$.

Notation: We let D_n be the number of all n-derangements.

When you see D_n , think combinatorially: "The number of ways to return n hats to n people so no one gets his/her own hat back"

Calculating the number of derangements

Example. Calculate D_n .

Solution. Let $\mathcal U$ be the set of all n-permutations.

Remove bad permutations using PIE.

For all i from 1 to n, define A_i to be n-perms where $p_i = i$.

Calculating the number of derangements

Example. Calculate D_n .

Solution. Let $\mathcal U$ be the set of all n-permutations.

Remove bad permutations using PIE.

For all i from 1 to n, define A_i to be n-perms where $p_i = i$.

In words, $A_i \cap A_j$ are *n*-perms where

Calculating the number of derangements

Example. Calculate D_n .

Solution. Let \mathcal{U} be the set of all *n*-permutations.

Remove bad permutations using PIE.

For all i from 1 to n, define A_i to be n-perms where $p_i = i$.

In words, $A_i \cap A_i$ are *n*-perms where

 $A_i \cap A_i \cap A_k$ are *n*-perms where

In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$.

Now calculate:
$$|\mathcal{U}| = |A_1| = |A_2| =$$

Calculating the number of derangements

Example. Calculate D_n .

Solution. Let \mathcal{U} be the set of all *n*-permutations.

Remove bad permutations using PIE.

For all i from 1 to n, define A_i to be n-perms where $p_i = i$.

In words, $A_i \cap A_i$ are *n*-perms where

 $A_i \cap A_i \cap A_k$ are *n*-perms where

In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$.

For all i and j, $|A_i \cap A_i| =$

Now calculate: $|\mathcal{U}| = |A_1| =$ $|A_2| =$

Calculating the number of derangements

Example. Calculate D_n .

Solution. Let \mathcal{U} be the set of all *n*-permutations.

Remove bad permutations using PIE.

For all i from 1 to n, define A_i to be n-perms where $p_i = i$.

In words, $A_i \cap A_i$ are *n*-perms where

 $A_i \cap A_j \cap A_k$ are *n*-perms where

In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$.

Now calculate:
$$|\mathcal{U}| = |A_1| = |A_2| =$$

For all i and j, $|A_i \cap A_j| =$

When intersecting k sets, $|A_{i_1} \cap \cdots \cap A_{i_k}| =$

Recall:
$$|A_1 \cup \cdots \cup A_n| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots$$

Calculating the number of derangements

Example. Calculate D_n .

Solution. Let \mathcal{U} be the set of all *n*-permutations.

Remove bad permutations using PIE.

For all *i* from 1 to *n*, define A_i to be *n*-perms where $p_i = i$.

In words, $A_i \cap A_i$ are *n*-perms where

 $A_i \cap A_j \cap A_k$ are *n*-perms where

In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$.

Now calculate:
$$|\mathcal{U}| = |A_1| = |A_2| =$$

For all i and j, $|A_i \cap A_j| =$

When intersecting k sets, $|A_{i_1} \cap \cdots \cap A_{i_k}| =$

Recall:
$$|A_1 \cup \cdots \cup A_n| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots$$

Therefore,
$$D_n = |\mathcal{U}| - |A_1 \cup \cdots \cup A_n| = |A_n|$$

Upon simplification, we see

$$\begin{array}{ll} D_{n} = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots + (-1)^{n}\binom{n}{n}0! \\ = n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^{n}\frac{n!}{n!} \\ = n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^{n}\frac{1}{n!}\right] \end{array}$$

Upon simplification, we see

$$D_{n} = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots + (-1)^{n}\binom{n}{n}0!$$

$$= n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^{n}\frac{n!}{n!}$$

$$= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^{n}\frac{1}{n!}\right]$$

Recall: Taylor series expansion of e^x :

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

Upon simplification, we see

$$D_{n} = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots + (-1)^{n}\binom{n}{n}0!$$

$$= n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^{n}\frac{n!}{n!}$$

$$= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^{n}\frac{1}{n!}\right]$$

Recall: Taylor series expansion of e^x :

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Plug in x = -1 and truncate after n terms to see that

$$e^{-1} \approx \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right]$$

Upon simplification, we see

$$D_{n} = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots + (-1)^{n}\binom{n}{n}0!$$

$$= n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^{n}\frac{n!}{n!}$$

$$= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^{n}\frac{1}{n!}\right]$$

Recall: Taylor series expansion of e^x :

$$e^{x} = 1 + \frac{x}{11} + \frac{x^{2}}{21} + \frac{x^{3}}{31} + \cdots$$

Plug in x=-1 and truncate after n terms to see that $e^{-1} \approx \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{2!} + \dots + (-1)^n \frac{1}{n!}\right]$

Conclusion: If
$$n$$
 people go to a party and the hats are passed back randomly, the probability that no one gets his or her hat back at the party is $D_n/n!$, which is approximately $1/e \approx 37\%$.

Combinatorial proof involving D_n

Recall: The combinatorial interpretation of D_n is: "The number of ways to return n hats to n people so no one gets his/her own hat back"

Example. Prove the following recurrence relation for D_n combinatorially.

$$D_n = (n-1)(D_{n-2} + D_{n-1})$$

Recall: $S(n, k) = {n \choose k}$ is the number of **set partitions** of [n] into exactly k parts

```
(Careful: change of notation !!)
```

Recall: $S(n, k) = {n \choose k}$ is the number of **set partitions** of [n] into exactly k parts

(Careful: change of notation !!)

Recall: $S(n, k) = {n \atop k}$ is the number of **set partitions** of [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$.

```
(Careful: change of notation !!)
```

Recall: $S(n, k) = {n \atop k}$ is the number of **set partitions** of [n] into exactly k parts, and k!S(n, k) is the number of **onto functions** $[n] \rightarrow [k]$.

Question: What is a formula for S(n, k)?

```
(Careful: change of notation !!)
```

Recall: $S(n, k) = {n \atop k}$ is the number of **set partitions** of [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for S(n, k)?

Solution. We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U}=$ set of all functions from [n] to [k]. We will remove the "bad" functions where the range is not [k].

(Careful: change of notation !!)

Recall: $S(n, k) = {n \atop k}$ is the number of **set partitions** of [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for S(n, k)?

Solution. We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U} = \text{set}$ of all functions from [n] to [k]. We will remove the "bad" functions where the range is not [k].

Define A_i be the set of functions $f:[n] \to [k]$ where i is not "hit".

(Careful: change of notation !!)

Recall: $S(n, k) = {n \atop k}$ is the number of **set partitions** of [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for S(n, k)?

Solution. We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U}=$ set of all functions from [n] to [k]. We will remove the "bad" functions where the range is not [k].

Define A_i be the set of functions $f:[n] \to [k]$ where i is not "hit".

In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

(Careful: change of notation !!)

Recall: $S(n, k) = {n \choose k}$ is the number of **set partitions** of [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for S(n, k)?

Solution. We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U} = \text{set}$ of all functions from [n] to [k]. We will remove the "bad" functions where the range is not [k].

Define A_i be the set of functions $f:[n] \to [k]$ where i is not "hit".

In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

We calculate: $|\mathcal{U}| = k^n$, $|A_i| = (k-1)^n$, $|A_i \cap A_j| = (k-2)^n$ When intersecting j sets, $|A_{i_1} \cap \cdots \cap A_{i_j}| = (k-j)^n$.

(Careful: change of notation !!)

Recall: $S(n, k) = {n \atop k}$ is the number of **set partitions** of [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for S(n, k)?

Solution. We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U} = \text{set of all functions from } [n]$ to [k]. We will remove the "bad" functions where the range is not [k].

Define A_i be the set of functions $f:[n] \to [k]$ where i is not "hit".

In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

We calculate: $|\mathcal{U}| = k^n$, $|A_i| = (k-1)^n$, $|A_i \cap A_j| = (k-2)^n$ When intersecting j sets, $|A_{i_1} \cap \cdots \cap A_{i_j}| = (k-j)^n$.

Therefore, $k!S(n,k) = \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}$; we conclude $S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}$

(Careful: change of notation !!)

Recall: $S(n, k) = {n \atop k}$ is the number of **set partitions** of [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for S(n, k)?

Solution. We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U} = \text{set of all functions from } [n]$ to [k]. We will remove the "bad" functions where the range is not [k].

Define A_i be the set of functions $f:[n] \to [k]$ where i is not "hit".

In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

We calculate: $|\mathcal{U}| = k^n$, $|A_i| = (k-1)^n$, $|A_i \cap A_j| = (k-2)^n$ When intersecting j sets, $|A_{i_1} \cap \cdots \cap A_{i_j}| = (k-j)^n$.

Therefore, $k!S(n,k) = \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}$; we conclude $S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^{n}$.

(Careful: change of notation !!)

$$B_n = \sum_{k \ge 0} {n \brace k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k {k \choose j} (-1)^{k-j} j^n$$

(Careful: change of notation !!)

$$B_n = \sum_{k>0} {n \brace k} = \sum_{k>0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

(Careful: change of notation !!)

$$B_n = \sum_{k \ge 0} {n \choose k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$
$$= \sum_{k \ge 0} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n$$

(Careful: change of notation !!)

$$B_n = \sum_{k \ge 0} {n \brace k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$
$$= \sum_{k \ge 0} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \ge 0} \sum_{j=0}^k \frac{(-1)^{k-j}}{(k-j)!} \frac{j^n}{j!}$$

(Careful: change of notation !!)

$$B_n = \sum_{k \ge 0} {n \brace k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

$$= \sum_{k \ge 0} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \ge 0} \sum_{j=0}^k \frac{(-1)^{k-j}}{(k-j)!} \frac{j^n}{j!}$$

$$= \sum_{j \ge 0} \sum_{k \ge j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^n}{j!}$$

(Careful: change of notation !!)

$$B_n = \sum_{k \ge 0} {n \brace k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

$$= \sum_{k \ge 0} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \ge 0} \sum_{j=0}^k \frac{(-1)^{k-j}}{(k-j)!} \frac{j^n}{j!}$$

$$= \sum_{j \ge 0} \sum_{k \ge j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^n}{j!} = \sum_{j \ge 0} \frac{j^n}{j!} \sum_{k \ge j} \frac{(-1)^{k-j}}{(k-j)!}$$

(Careful: change of notation !!)

$$B_{n} = \sum_{k \geq 0} {n \brace k} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^{n}$$

$$= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^{n} = \sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!}$$

$$= \sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!} = \sum_{j \geq 0} \frac{j^{n}}{j!} \sum_{m \geq 0} \frac{(-1)^{m}}{(m)!}$$

(Careful: change of notation !!)

$$B_{n} = \sum_{k \geq 0} {n \brace k} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^{n}$$

$$= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^{n} = \sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!}$$

$$= \sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!} = \sum_{j \geq 0} \frac{j^{n}}{j!} \sum_{m \geq 0} \frac{(-1)^{m}}{(m)!} = \sum_{j \geq 0} \frac{j^{n}}{j!} \frac{1}{e}$$

(Careful: change of notation !!)

Recall: B_n is the number of partitions of [n] into any number of parts. Manipulate our expression from prev. page to find a formula.

$$B_{n} = \sum_{k \geq 0} {n \brace k} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^{n}$$

$$= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^{n} = \sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!}$$

$$= \sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!} = \sum_{j \geq 0} \frac{j^{n}}{j!} \sum_{m \geq 0} \frac{(-1)^{m}}{(m)!} = \sum_{j \geq 0} \frac{j^{n}}{j!} \frac{1}{e}$$

Theorem 4.3.3. For any n > 0, $B_n = \frac{1}{e} \sum_{j \geq 0} \frac{j^n}{j!}$.

(Careful: change of notation !!)

Recall: B_n is the number of partitions of [n] into any number of parts. Manipulate our expression from prev. page to find a formula.

$$B_{n} = \sum_{k \geq 0} {n \brace k} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^{n}$$

$$= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^{n} = \sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!}$$

$$= \sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!} = \sum_{j \geq 0} \frac{j^{n}}{j!} \sum_{m \geq 0} \frac{(-1)^{m}}{(m)!} = \sum_{j \geq 0} \frac{j^{n}}{j!} \frac{1}{e}$$

Theorem 4.3.3. For any n > 0, $B_n = \frac{1}{e} \sum_{j \ge 0} \frac{j^n}{j!}$. For example, $B_5 = \frac{1}{e} \left(\frac{0^5}{0!} + \frac{1^5}{1!} + \frac{2^5}{2!} + \frac{3^5}{3!} + \frac{4^5}{4!} + \frac{5^5}{5!} + \cdots \right) = 52$.