Compositions 87

Powers of generating functions

A special case of convolution gives the coefficients of powers of a g.f.:

$$(A(x))^{2} = \sum_{k>0} \left(\sum_{i=0}^{k} a_{i} a_{k-i} \right) x^{k} = \sum_{k>0} \left(\sum_{i_{1}+i_{2}=k} a_{i_{1}} a_{i_{2}} \right) x^{k}.$$

Similarly,

$$(A(x))^n = \sum_{k>0} \left(\sum_{i_1+i_2+\cdots+i_n=k} a_{i_1} a_{i_2} \cdots a_{i_n} \right) x^k.$$

Conclusion:

 $[x^k](A(x))^n$ counts sequences of objects $(A_1, A_2, ..., A_n)$, all of type A, with a total size (summed over all objects) of k.

Example. What is the generating function for the number of points that a basketball team can score if they hit a sequence of 10 baskets?

In how many ways can they score 20 points in those 10 baskets?

Compositions 88

Compositions

Question: In how many ways can we write a positive integer n as a sum of positive integers?

If order doesn't matter:

```
A partition: n = p_1 + p_2 + \cdots + p_\ell for positive integers p_1, p_2 \dots, p_\ell satisfying p_1 \ge p_2 \ge \cdots \ge p_\ell.
```

If order does matter:

```
A composition: n = i_1 + i_2 + \cdots + i_\ell for positive integers i_1, i_2, \dots, i_\ell with no restrictions.
```

Example. There are 2^{n-1} compositions of n. When n=4:

```
4
3+1
2+2
2+1+1
1+1+1+1
```

Compositions of Generating Functions

Question: Let $F(x) = \sum_{n \geq 0} f_n x^n$ and $G(x) = \sum_{n \geq 0} g_n x^n$. What can we learn about the composition H(x) = F(G(x))?

Investigate F(x) = 1/(1-x).

$$H(x) = F(G(x)) = \frac{1}{1 - G(x)} =$$

- ► This is an infinite sum of (likely infinite) power series. Is this OK?
- ▶ The constant term h_0 of H(x) only makes sense if ______.
- This implies that x^n divides $G(x)^n$. Hence, there are at most n-1 summands which contain x^{n-1} . We conclude that the infinite sum makes sense.

For a general composition with $g_0 = 0$,

$$F(G(x)) = \sum_{n\geq 0} f_n G(x)^n = f_0 + f_1 G(x) + f_2 G(x)^2 + f_3 G(x)^3 + \cdots$$

Compositions. of. Generating Functions.

Interpreting
$$\frac{1}{1 - G(x)} = 1 + G(x)^{1} + G(x)^{2} + G(x)^{3} + \cdots$$

Recall: The generating function $G(x)^n$ counts sequences of length n of objects (G_1, G_2, \ldots, G_n) , each of type G, and the coefficient $[x^k](G(x)^n)$ counts those n-sequences that have total size equal to k.

Conclusion: As long as $g_0 = 0$, then $1 + G(x)^1 + G(x)^2 + G(x)^3 + \cdots$ counts sequences of **any length** of objects of type G, and the coefficient $[x^k] \frac{1}{1-G(x)}$ counts those that have total size equal to k.

Alternatively: Interpret $[x^k] \frac{1}{1-G(x)}$ thinking of k as this *total size*. First, find **all ways** to break down k into integers $i_1 + \cdots + i_\ell = k$. Then create **all sequences** of objects of type G in which object j has size i_j .

Think: A composition of generating functions equals a composition. of. generating. functions.

An Example, Compositions

Example. How many compositions of k are there?

Solution. A composition of k corresponds to a sequence (i_1, \ldots, i_ℓ) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i".

What does size correspond to?

How many have value *i*? Exactly one: the number *i*.

So the generating function for our objects is

$$G(x) = 0 + 1x^{1} + 1x^{2} + 1x^{3} + 1x^{4} + \dots = \underline{\hspace{1cm}}.$$

We conclude that the generating function for compositions is $H(x) = \frac{1}{1 - G(x)} =$

So the number of compositions of n is

A Composition Example

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of platoons of size (i_1, \ldots, i_ℓ) .

Given *i* soldiers in a platoon, in how many ways can we assign the platoon a leader? _____

Therefore G(x) =

And the generating function for such a military breakdown is

$$H(x) = \frac{1}{1 - G(x)} = \frac{1 - 2x + x^2}{1 - 3x + x^2}$$

Domino Tilings

Example. How many square-domino tilings are there of a $1 \times n$ board?

Solution. A tiling corresponds to a sequence (i_1, \ldots, i_ℓ) ,

where i_j ______.

So $G(x) = \underline{\hspace{1cm}}$, and therefore $H(x) = \underline{\hspace{1cm}}$.

Another way to see this:

	x^0	x^1	x^2	x^3	x^4	<i>x</i> ⁵	<i>x</i> ⁶	x^7	<i>x</i> ⁸	x^9	x^{10}	x^{11}	$ x^{12} $
$G(x)^0 =$													
$G(x)^{1} =$													
$G(x)^2 =$													
$G(x)^3 =$													
$G(x)^4 =$													
$G(x)^5 =$													
$G(x)^6 =$													
1/(1 - G(x)) =													