Combinatorial statistics

Given a set of combinatorial objects A, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $A \to \mathbb{Z}_{\geq 0}$.

Combinatorial statistics

Given a set of combinatorial objects A, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $A \to \mathbb{Z}_{>0}$.

Example. Let S be the set of subsets of $\{1, 2, 3\}$.

The cardinality of a set is a combinatorial statistic on S.

$$ig|\emptysetig|=0 \qquad ig|\{1\}ig|=1 \qquad ig|\{2\}ig|=1 \qquad ig|\{3\}ig|=1 \ ig|\{1,2\}ig|=2 \quad ig|\{1,3\}ig|=2 \quad ig|\{2,3\}ig|=2 \quad ig|\{1,2,3\}ig|=3$$

Combinatorial statistics

Given a set of combinatorial objects A, a **combinatorial statistic** is an integer given to every element of the set.

In other words, it is a function $A \to \mathbb{Z}_{>0}$.

Example. Let S be the set of subsets of $\{1, 2, 3\}$.

The cardinality of a set is a combinatorial statistic on S.

$$ig|\emptysetig|=0$$
 $ig|\{1\}ig|=1$ $ig|\{2\}ig|=1$ $ig|\{3\}ig|=1$ $ig|\{1,2\}ig|=2$ $ig|\{1,3\}ig|=2$ $ig|\{2,3\}ig|=2$ $ig|\{1,2,3\}ig|=3$

Combinatorial statistics provide a refinement of counting.

Combinatorial statistics

Given a set of combinatorial objects A, a **combinatorial statistic** is an integer given to every element of the set.

In other words, it is a function $A \to \mathbb{Z}_{>0}$.

Example. Let S be the set of subsets of $\{1, 2, 3\}$.

The cardinality of a set is a combinatorial statistic on S.

$$ig|\emptysetig|=0 \qquad ig|\{1\}ig|=1 \qquad ig|\{2\}ig|=1 \qquad ig|\{3\}ig|=1 \ ig|\{1,2\}ig|=2 \quad ig|\{1,3\}ig|=2 \quad ig|\{2,3\}ig|=2 \quad ig|\{1,2,3\}ig|=3$$

Combinatorial statistics provide a refinement of counting.

Statistics and Permutations

Questions involving combinatorial statistics:

▶ What is the *distribution* of the statistics?

Statistics and Permutations

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?

Statistics and Permutations

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?
- ▶ Which statistics have the same distribution?
 - ► Insight into their structure.
 - Provides non-trivial bijections in the set?

Statistics and Permutations

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?
- ▶ Which statistics have the same distribution?
 - ► Insight into their structure.
 - Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.

Representations of permutations

One-line notation: $\pi = 416253$ Cycle notation: $\pi = (142)(36)(5)$

Statistics and Permutations

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?
- ▶ Which statistics have the same distribution?
 - ► Insight into their structure.
 - Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.

Representations of permutations

One-line notation: $\pi = 416253$ Cycle notation: $\pi = (142)(36)(5)$

Matrix-like diagram:

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since $4 \searrow 1$, $6 \searrow 2$, $5 \searrow 3$.

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A descent is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since 4 > 1, 6 > 2, 5 > 3.

Question: How many *n*-permutations have *d* descents?

$$des(12) = 0$$
 $des(123) = ___ des(213) = ___ des(312) = ___$

$$des(21) = 1$$
 $des(132) = ___ des(231) = ___ des(321) = ___$

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A descent is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since $4 \searrow 1$, $6 \searrow 2$, $5 \searrow 3$.

Question: How many n-permutations have d descents?

$$des(12) = 0$$
 $des(123) = ___ des(213) = ___ des(312) = ___$

$$des(21) = 1$$
 $des(132) = \underline{\hspace{1cm}}$ $des(231) = \underline{\hspace{1cm}}$ $des(321) = \underline{\hspace{1cm}}$

n d	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $des(\pi)$?

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position i such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since 4 > 1, 6 > 2, 5 > 3.

Question: How many n-permutations have d descents?

$$des(12) = 0$$
 $des(123) = ___ des(213) = ___ des(312) = ___$

$$des(213) = \underline{\hspace{1cm}} des(312) = \underline{\hspace{1cm}}$$

$$des(21) = 1 \quad des(132) =$$

$$des(21) = 1$$
 $des(132) = ___ des(231) = ___ des(321) = ___$

n d	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $des(\pi)$?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has _____ descents.

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position i such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since 4 > 1, 6 > 2, 5 > 3.

Question: How many n-permutations have d descents?

$$des(12) = 0 \quad des(123) =$$

$$des(12) = 0$$
 $des(123) = ___ des(213) = ___ des(312) = ___$

$$des(21) = 1 \quad des(132) =$$

$$des(21) = 1$$
 $des(132) = \underline{\qquad}$ $des(231) = \underline{\qquad}$ $des(321) = \underline{\qquad}$

n d	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $des(\pi)$?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has _____ descents.

These are the **Eulerian numbers**.

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the **number of inversions** in π .

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the **number of inversions** in π .

Example. When $\pi = 416253$, inv $(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3.

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.
An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the **number of inversions** in π .

Example. When $\pi = 416253$, $inv(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3. In a string diagram $inv(\pi) = number$ of crossings.

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. $\pi_i > \pi_j$.

Define inv(π) as the number of inversions in π .

Example. When $\pi = 416253$, $inv(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3. In a string diagram $inv(\pi) = number of crossings$. In a matrix diagram $inv(\pi)$, draw *Rothe diagram*:

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the number of inversions in π .

Example. When $\pi = 416253$, inv $(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3. In a string diagram inv(π) = number of crossings. In a matrix diagram inv(π), draw Rothe diagram:

$$inv(312) = _{---}$$

 $inv(321) = _{---}$

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the number of inversions in π .

114

inv(312)	=	
inv(321)	=	

$n \setminus i$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
1 2 3 4	1	1 2 3	5	6	5	3	1

What are the possible values for $inv(\pi)$?

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the **number of inversions** in π .

Example. When $\pi = 416253$, $inv(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3. In a string diagram $inv(\pi) = number$ of crossings. In a matrix diagram $inv(\pi)$, draw *Rothe diagram*:

114

$n \setminus i$	0	1	2	3	4	5	6
1	1						
2	1	1					
2 3	1	1 2 3	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $inv(\pi)$?

The inversion number is a good way to count how "far away" a permutation is from the identity.

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

$$maj(12) = 0$$
 $maj(123) = ___ maj(213) = ___ maj(312) = ___ maj(21) = 1$ $maj(132) = ___ maj(231) = ___ maj(321) = ____ maj(321) = ____ maj($

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

$$maj(12) = 0$$
 $maj(123) = ___ maj(213) = ___ maj(312) = ___ maj(21) = 1$ $maj(312) = ___ maj(231) = ___ maj(321) = ____ maj(321) = ____ maj($

n m	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $maj(\pi)$?

The distribution of maj(π)
IS THE SAME AS
the distribution of inv(π)!

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

$$maj(12) = 0$$
 $maj(123) = ___ maj(213) = ___ maj(312) = ___ maj(21) = 1$ $maj(312) = ___ maj(231) = ___ maj(321) = ____ maj(321) = ____ maj($

$n \setminus m$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $maj(\pi)$?

The distribution of maj(π)
IS THE SAME AS
the distribution of inv(π)!

A statistic that has the same distribution as inv is called Mahonian.

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q}=\left(1+q+q^2+\cdots+q^{n-2}+q^{n-1}\right) \text{ is a}$$
 q -analog of q because $\lim_{q\to 1}\frac{1-q^n}{1-q}=n$.

116

q-analogs

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q}=\left(1+q+q^2+\cdots+q^{n-2}+q^{n-1}\right) \text{ is a} \\ q\text{-analog of } n \text{ because } \lim_{q\to 1}\frac{1-q^n}{1-q}=n.$$

We write $[n]_q = \frac{1-q^n}{1-q}$.

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q}=\left(1+q+q^2+\cdots+q^{n-2}+q^{n-1}\right) \text{ is a} \\ q\text{-analog of } n \text{ because } \lim_{q\to 1}\frac{1-q^n}{1-q}=n.$$

We write $[n]_q = \frac{1-q^n}{1-q}$.

q-analogs work hand in hand with combinatorial statistics.

If stat is a combinatorial statistic on a set S (stat : $S \mapsto \mathbb{N}$), then $\sum_{s \in S} q^{\operatorname{stat}(s)}$ is a q-analog of |S|

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q}=\left(1+q+q^2+\cdots+q^{n-2}+q^{n-1}\right) \text{ is a}}{q\text{-analog of } n \text{ because } \lim_{q\to 1}\frac{1-q^n}{1-q}=n.}$$

We write $[n]_q = \frac{1-q^n}{1-q}$.

q-analogs work hand in hand with combinatorial statistics.

If stat is a combinatorial statistic on a set S (stat : $S \mapsto \mathbb{N}$), then $\sum_{s \in S} q^{\operatorname{stat}(s)}$ is a q-analog of |S| because

$$\lim_{q o 1} \sum_{s \in S} q^{\operatorname{stat}(s)} = \sum_{s \in S} 1^{\operatorname{stat}(s)} = \sum_{s \in S} 1 = |S|.$$

117

Inversion statistics

Question: What is the generating function $\sum_{\pi \in S_n} q^{\text{inv}(\pi)}$?

Question: What is the generating function $\sum_{\pi \in S_n} q^{\text{inv}(\pi)}$?

n	$\sum_{\pi \in S_n} q^{inv(\pi)}$
1	$1q^0 = 1$
2	$1q^0+1q^1 = (1+q)$
3	$\left \begin{array}{l} 1q^0 + 2q^1 + 2q^2 + 1q^3 \end{array} ight. = (1+q+q^2)(1+q) \left \begin{array}{l} \end{array} ight.$
4	$1q^0 + 3q^1 + 5q^2 + 6q^3 + 5q^4 + 3q^5 + 1q^6 =$

Question: What is the generating function $\sum_{\pi \in S_n} q^{\text{inv}(\pi)}$?

n	$\sum_{\pi \in S_n} q^{inv(\pi)}$
1	$1q^0 = 1$
2	$1q^0 + 1q^1 = (1+q)$
3	$1q^0 + 2q^1 + 2q^2 + 1q^3 = (1+q+q^2)(1+q)$
4	$1q^0 + 3q^1 + 5q^2 + 6q^3 + 5q^4 + 3q^5 + 1q^6 =$

Conjecture: $\sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} =$

Question: What is the generating function $\sum_{\pi \in S_n} q^{\text{inv}(\pi)}$?

$$\begin{array}{|c|c|c|c|}\hline n & \sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} \\ \hline 1 & 1q^0 & = 1 \\ 2 & 1q^0 + 1q^1 & = (1+q) \\ 3 & 1q^0 + 2q^1 + 2q^2 + 1q^3 & = (1+q+q^2)(1+q) \\ 4 & 1q^0 + 3q^1 + 5q^2 + 6q^3 + 5q^4 + 3q^5 + 1q^6 = \end{array}$$

Conjecture: $\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q \cdots [1]_q = [n]_q!$, the q-factorial.

Question: What is the generating function $\sum_{\pi \in S_n} q^{\text{inv}(\pi)}$?

n	$\sum_{\pi \in S_n} q^{inv(\pi)}$
1	$1q^0 = 1$
2	$1q^0+1q^1 = (1+q)$
3	$\left \begin{array}{l} 1q^0 + 2q^1 + 2q^2 + 1q^3 \end{array} ight. = (1+q+q^2)(1+q) \left \begin{array}{l} \end{array} ight.$
4	$1q^0 + 3q^1 + 5q^2 + 6q^3 + 5q^4 + 3q^5 + 1q^6 =$

Conjecture: $\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q \cdots [1]_q = [n]_q!$, the q-factorial.

Claim: This equation makes sense when q = 1.

Theorem:
$$\sum_{\pi \in S_n} q^{\operatorname{inv}(\pi)} = [n]_q!$$

Proof. There exists a bijection

$$\left\{\begin{array}{c} \text{permutations} \\ \pi \in S_n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{lists } (a_1, \dots, a_n) \\ \text{where } 0 \leq a_i \leq n-i \end{array}\right\}.$$

Theorem:
$$\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q!$$

Proof. There exists a bijection

$$\left\{\begin{array}{c} \text{permutations} \\ \pi \in S_n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{lists } (a_1, \dots, a_n) \\ \text{where } 0 \leq a_i \leq n-i \end{array}\right\}.$$

Given a permutation π , create its **inversion table**. Define a_i to be the number of entries j to the left of i that are smaller than i.

Then
$$\operatorname{inv}(\pi) = a_1 + a_2 + \cdots + a_n$$
.

Theorem:
$$\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q!$$

Proof. There exists a bijection

$$\left\{\begin{array}{c} \text{permutations} \\ \pi \in S_n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{lists } (a_1, \dots, a_n) \\ \text{where } 0 \leq a_i \leq n-i \end{array}\right\}.$$

Given a permutation π , create its **inversion table**. Define a_i to be the number of entries j to the left of i that are smaller than i.

Then
$$\operatorname{inv}(\pi) = a_1 + a_2 + \cdots + a_n$$
.

Example. The inversion table of $\pi = 43152$ is (3, 2, 0, 1, 0).

Theorem: $\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q!$

Proof. There exists a bijection

$$\left\{\begin{array}{c} \text{permutations} \\ \pi \in S_n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{lists } (a_1, \dots, a_n) \\ \text{where } 0 \leq a_i \leq n-i \end{array}\right\}.$$

Given a permutation π , create its **inversion table**. Define a_i to be the number of entries j to the left of i that are smaller than i.

Then
$$\operatorname{inv}(\pi) = a_1 + a_2 + \cdots + a_n$$
.

Example. The inversion table of $\pi = 43152$ is (3, 2, 0, 1, 0).

$$\begin{split} \sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} &= \sum_{a_1 = 0}^{n-1} \sum_{a_2 = 0}^{n-2} \cdots \sum_{a_n = 0}^{0} q^{a_1 + a_2 + \cdots + a_n} \\ &= \left(\sum_{a_1 = 0}^{n-1} q^{a_1}\right) \left(\sum_{a_2 = 0}^{n-2} q^{a_2}\right) \cdots \left(\sum_{a_n = 0}^{0} q^{a_n}\right) \\ &= [n]_q \qquad [n-1]_q \quad \cdots \quad [1]_q \quad = [n]_q! \end{split}$$

q-analogs 119

Notes

We said that inv and maj are equidistributed. Two possible proofs:

▶ Find a bijection $f: S_n \to S_n$ such that maj $(\pi) = \text{inv}(f(\pi))$.

$$lacksquare$$
 Or prove $\sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi \in S_n} q^{\mathsf{maj}(\pi)}.$

We said that inv and maj are equidistributed. Two possible proofs:

▶ Find a bijection $f: S_n \to S_n$ such that maj $(\pi) = \text{inv}(f(\pi))$.

$$lacksquare$$
 Or prove $\sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi \in S_n} q^{\mathsf{maj}(\pi)}$.

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

These *polynomials* are called the *q*-binomial coefficients or Gaussian polynomials.

We said that inv and maj are equidistributed. Two possible proofs:

▶ Find a bijection $f: S_n \to S_n$ such that $maj(\pi) = inv(f(\pi))$.

$$lacksquare$$
 Or prove $\sum_{\pi \in \mathcal{S}_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi \in \mathcal{S}_n} q^{\mathsf{maj}(\pi)}.$

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

These *polynomials* are called the *q*-binomial coefficients or Gaussian polynomials.

$$\blacktriangleright \ \operatorname{Iim}_{q \to 1} \begin{bmatrix} n \\ k \end{bmatrix}_q = \binom{n}{k}.$$

We said that inv and maj are equidistributed. Two possible proofs:

▶ Find a bijection $f: S_n \to S_n$ such that $maj(\pi) = inv(f(\pi))$.

$$lacksquare$$
 Or prove $\sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi \in S_n} q^{\mathsf{maj}(\pi)}.$

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

These *polynomials* are called the *q*-binomial coefficients or Gaussian polynomials.

- $\blacktriangleright \ \operatorname{lim}_{q \to 1} \begin{bmatrix} n \\ k \end{bmatrix}_q = \binom{n}{k}.$
- ▶ They are indeed polynomials.
- Example. $\begin{bmatrix} 4 \\ 2 \end{bmatrix}_q = 1 + q + 2q^2 + q^3 + q^4$

We said that inv and maj are equidistributed. Two possible proofs:

▶ Find a bijection $f: S_n \to S_n$ such that $maj(\pi) = inv(f(\pi))$.

$$lacksquare$$
 Or prove $\sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi \in S_n} q^{\mathsf{maj}(\pi)}$.

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

These *polynomials* are called the *q*-binomial coefficients or Gaussian polynomials.

- $\blacktriangleright \ \operatorname{lim}_{q \to 1} \begin{bmatrix} n \\ k \end{bmatrix}_q = \binom{n}{k}.$
- ► They are indeed polynomials.
- ► Example. $\begin{bmatrix} 4 \\ 2 \end{bmatrix}_q = 1 + q + 2q^2 + q^3 + q^4$

Combinatorial interpretations of q-binomial coefficients!

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $\text{inv}(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$. Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8$.

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $\text{inv}(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$.

Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\mathsf{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $inv(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$. Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\mathsf{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from (0,0) to (a,b).

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $\text{inv}(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$.

Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\mathsf{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from (0,0) to (a,b).

Let area(P) be the area above a path P.

Then
$$\sum_{P\in\mathcal{P}}q^{\operatorname{area}(P)}=\left[\begin{smallmatrix}a+b\\a\end{smallmatrix}\right]_q$$
. (Note $|\mathcal{P}|=\left(\begin{smallmatrix}a+b\\a\end{smallmatrix}\right)$.)

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $inv(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$.

Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\mathsf{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from (0,0) to (a,b). Let area(P) be the area above a path P. Then $\sum_{P \in \mathcal{P}} q^{\text{area}(P)} = \begin{bmatrix} a+b \\ a \end{bmatrix}_a$. (Note $|\mathcal{P}| = \begin{pmatrix} a+b \\ a \end{pmatrix}$.)

This can also be used to give a q-analog of the Catalan numbers.

121 q-analogs

There's always more to learn!!!

References:

Miklós Bóna. Combinatorics of Permutations, CRC, 2004.

T. Kyle Petersen. Two-sided Eulerian numbers via balls in boxes. http://arxiv.org/abs/1209.6273

The Combinatorial Statistic Finder. http://findstat.org/

q-analogs 122

Course Evaluation

Please comment on:

- ▶ Prof. Chris's effectiveness as a teacher.
- Prof. Chris's contribution to your learning.
- ▶ The course material: What you enjoyed and/or found challenging.
- Is there anything you would change about the course?
- What do you see as the pros and cons of standards-based grading?
 Do you like this way of assessment and grading?
- ▶ Is there anything else Prof. Chris should know?

Place completed evaluations in the provided folder.