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Introduction 1

What is combinatorics?

In this class: Learn how to count . . .

better.

Question: How many domino tilings are there of an 8× 8 chessboard?

We have the answer! But what does it mean?
And how would you calculate it?
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In this class: Learn how to count . . . better.

Question: How many domino tilings are there of an 8× 8 chessboard?

A domino tiling is a placement of dominoes on a region, where
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What is combinatorics?

In this class: Learn how to count . . . better.

Question: How many domino tilings are there of an 8× 8 chessboard?

How many people think there are more than:

10?

We have the answer! But what does it mean?
And how would you calculate it?
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What is combinatorics?

In this class: Learn how to count . . . better.

Question: How many domino tilings are there of an 8× 8 chessboard?

How many people think there are more than:

100?

We have the answer! But what does it mean?
And how would you calculate it?
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What is combinatorics?

In this class: Learn how to count . . . better.

Question: How many domino tilings are there of an 8× 8 chessboard?

How many people think there are more than:

1,000?

We have the answer! But what does it mean?
And how would you calculate it?
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What is combinatorics?

In this class: Learn how to count . . . better.

Question: How many domino tilings are there of an 8× 8 chessboard?

The TRUE number is:

We have the answer! But what does it mean?
And how would you calculate it?
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The TRUE number is:

12,988,816.

We have the answer! But what does it mean?
And how would you calculate it?
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Introduction 2

Domino tilings

How to determine the “answer”?

I Convert the chessboard into a combinatorial structure (a graph).

I Represent the graph numerically as a matrix.

I Take the determinant of this matrix.

I Use the structure of the matrices to determine their eigenvalues.

Question: How many domino tilings are there of an m × n board?

Answer: If m and n are both even, then we have the formula (!):

m/2∏
j=1

n/2∏
k=1

(
4 cos2

πj

m + 1
+ 4 cos2

πk

n + 1

)
.

Learn how to count . . . better.
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Introduction 3

Combinatorial questions

What kind of questions come up in combinatorics?

They are questions about discrete objects.

I Can we count the objects?

I Count means give a number.

I Can we enumerate the arrangements?

I Enumerate means give a description or list.

I Do any objects have a desired property?

I This is an existence question.

I Can we construct an object with a desired property?

I We need to find a method of construction.

I Is there a “best” object?

I Prove optimality.

Mastering “Combinatorics” means internalizing techniques and
strategies to know the best way to approach a counting question.

Uses a different kind of reasoning than in other math classes.
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Introduction 4

To do well in this class:

I Come to class prepared.
I Print out and read over course notes.
I Read sections before class.

I Form good study groups.
I Discuss homework and classwork.
I Bounce proof ideas around.
I You will depend on this group.

I Put in the time.
I Three credits = 6–9 hours per week out of class.
I Homework stresses key concepts from class; learning takes time.

I Stay in contact.
I If you are confused, ask questions (in class and out).
I Don’t fall behind in coursework or project.
I I need to understand your concerns.

Visit the webpage. First homework (many parts!) due Wed.
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Get to know each other

Arrange yourselves into groups.

I Introduce yourself. (your name, where you are from)

I What brought you to this class?

I Fill out the front of your notecard:

I Write your name. (Stylize if you wish.)
I Write some words about how I might remember you & your name.
I Draw something (anything!) in the remaining space.

I Exchange contact information. (phone / email / other)

I Small talk suggestion: Did you do anything in the snow?



Simple Counting — §1.1 6

Four Counting Questions (p. 2)

Here are four counting questions.

Q1. How many 8-character passwords are there using A–Z , a–z , 0–9?

Q2. In how many ways can a baseball manager order nine fixed
baseball players in a lineup?

Q3. How many Pick-6 lottery tickets are there?
(Choose six numbers between 1–40.)

Q4. How many possible orders for a dozen donuts are there when
the store has 30 varieties?

Group discussion: Use your powers of estimation
to order these from smallest to largest.

< < <



Simple Counting — §1.1 7

Counting words

Definition: A list or word is an ordered sequence of objects.

Definition: A k-list or k-word is a list of length k .

I A list or word is always ordered and a set is always unordered.

Question: How many lists have three entries where

I The first two entries can be either A or B.

I The last entry is either 5 or 6.

Answer: We can solve this using a tree diagram:

Alternatively: Notice two independent choices
for each character. Multiply 2 · 2 · 2 = 8.

_ _ _

A _ _

B _ _

A A _

A B _

B A _

B B _

A A 5

A A 6

A B 5

A B 6

B A 5

B A 6

B B 5

B B 6
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Simple Counting — §1.1 8

The Product Principle

This illustrates:

The product principle: When counting lists (l1, l2, . . . , lk),

IF there are c1 choices for entry l1, each leading to a different list,

AND IF there are ci choices for entry li ,
no matter the choices made for l1 through li−1,
each leading to a different list

THEN there are c1c2 · · · ck such lists.

Caution: The product principle seems simple,
but we must be careful when we use it.

_ _ _
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Simple Counting — §1.1 9

Lists WITH repetition

Q1. How many 8-character passwords are there using A–Z , a–z , 0–9?

Answer: Creating a word of length 8, with choices for each
character. Therefore, the number of 8-character passwords is .

(=218,340,105,584,896)

In general, the number of words of length k that can be made from
an alphabet of length n and where repetition is allowed is nk



Simple Counting — §1.1 9

Lists WITH repetition

Q1. How many 8-character passwords are there using A–Z , a–z , 0–9?

Answer: Creating a word of length 8, with choices for each
character. Therefore, the number of 8-character passwords is .

(=218,340,105,584,896)

In general, the number of words of length k that can be made from
an alphabet of length n and where repetition is allowed is nk



Simple Counting — §1.1 10

Application: Counting Subsets

Example. How many subsets of a set S = {s1, s2, . . . , sn} are there?

Strategy: “Try small problems, see a pattern.”

I n = 0: S = ∅  {∅}, size 1.

I n = 1: S = {s1}  {∅, {s1}}, size 2.

I n = 2: S = {s1, s2}  {∅, {s1}, {s2}, {s1, s2}}, size 4.

I n = 3: S = {s1, s2, s3}  
{
∅, {s1}, {s2}, {s1, s2},
{s3},{s1, s3},{s2, s3},{s1, s2, s3}

}
, 8.

It appears that the number of subsets of S is . (notation)

This number also counts .

Equiv.: We can label the subsets by whether or not they contain si .

For example, for n = 3, we label the subsets

{
000,100,010,110,
001,101,011,111

}
.
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For example, for n = 3, we label the subsets

{
000,100,010,110,
001,101,011,111

}
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Permutations

Q2. In how many ways can a baseball manager order nine fixed
baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

.

Multiplying gives that the number of lineups is = 362,880.

Definition: A permutation of an n-set S is an (ordered) list of all
elements of S . There are n! such permutations.

Definition: A k-permutation of an n-set S is an (ordered) list of k
distinct elements of S .

I “Permutation” always refers to a list without repetition.

Question: How many k-permutations of n are there?



Simple Counting — §1.1 11

Permutations

Q2. In how many ways can a baseball manager order nine fixed
baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

.

Multiplying gives that the number of lineups is = 362,880.

Definition: A permutation of an n-set S is an (ordered) list of all
elements of S . There are n! such permutations.

Definition: A k-permutation of an n-set S is an (ordered) list of k
distinct elements of S .

I “Permutation” always refers to a list without repetition.

Question: How many k-permutations of n are there?



Simple Counting — §1.1 11

Permutations

Q2. In how many ways can a baseball manager order nine fixed
baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

.

Multiplying gives that the number of lineups is = 362,880.

Definition: A permutation of an n-set S is an (ordered) list of all
elements of S . There are n! such permutations.

Definition: A k-permutation of an n-set S is an (ordered) list of k
distinct elements of S .

I “Permutation” always refers to a list without repetition.

Question: How many k-permutations of n are there?



Simple Counting — §1.1 11

Permutations

Q2. In how many ways can a baseball manager order nine fixed
baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

.

Multiplying gives that the number of lineups is = 362,880.

Definition: A permutation of an n-set S is an (ordered) list of all
elements of S . There are n! such permutations.

Definition: A k-permutation of an n-set S is an (ordered) list of k
distinct elements of S .

I “Permutation” always refers to a list without repetition.

Question: How many k-permutations of n are there?



Simple Counting — §1.1 11

Permutations

Q2. In how many ways can a baseball manager order nine fixed
baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

.

Multiplying gives that the number of lineups is = 362,880.

Definition: A permutation of an n-set S is an (ordered) list of all
elements of S . There are n! such permutations.

Definition: A k-permutation of an n-set S is an (ordered) list of k
distinct elements of S .

I “Permutation” always refers to a list without repetition.

Question: How many k-permutations of n are there?



Simple Counting — §1.1 12

Lists WITHOUT repetition

Question: How many 8-character passwords are there using A–Z ,
a–z , 0–9, containing no repeated character?

OK: 2eas3FGS, 10293465 Not OK: 2kdjfng2, oOoOoOo0

Answer: The number of choices for each character are:

,

for a total of (62)8 = 62!
54! passwords.

In general, the number of words of length k that can be made from
an alphabet of length n and where repetition is NOT allowed is (n)k .

I That is, the number of k-permutations of an n-set is (n)k .

I Special case: For n-permutations of an n-set: n!.
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Notation

Some quantities appear frequently, so we use shorthand notation:

I [n] := {1, 2, . . . , n} I 2S := set of all subsets of S

I n! := n · (n − 1) · (n − 2) · · · 2 · 1

I (n)k := n · (n − 1) · (n − 2) · · · (n − k + 1) =
n!

(n − k)!

I

(
n

k

)
:=

n!

k!(n − k)!
=

(n)k
k!

I

((
n

k

))
:=

(
k + n − 1

k

)

F Leave answers to counting questions in terms of these quantities.

F Do NOT multiply out unless you are comparing values.
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Counting subsets of a set

My question: In how many ways are there to choose a subset of k
objects out of a set of n objects?

Your answer:
(n
k

)
. “n choose k”.

Question: In how many ways can you choose 4 objects out of 10?

(10
4

)

Q3. How many Pick-6 lottery tickets are there?
(Choose six numbers between 1–40.)

Answer:
(40
6

)
= 3,838,380.

I
(n
k

)
is called a binomial coefficient.

I Alternate phrasing: How many k-subsets of an n-set are there?

I The individual objects we are counting are unordered.
They are subsets, not lists.
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A formula for
(
n
k

)
You may know that

(n
k

)
= n!

k!(n−k)!

= 1
k!(n)k

. But why?

Let’s rearrange it. And prove it!

(n)k =

(
n

k

)
k!

We ask the question:

“In how many ways are there to create a k-list of an n-set?”

LHS:

RHS:

Since we counted the same quantity twice, they must be equal!
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Counting Multisets

Definition: A multiset is an unordered collection of elements
where repetition is allowed.

I Example. {a, a, b, d} is a multiset.

Definition: We say M is a multisubset of a set (or multiset) S
if every element of M is an element of S .

I Example. M = {a, a, a, b, d} is a multisubset of S = {a, b, c , d}.

Think Write Pair Share: Enumerate all multisubsets of [3].

[In other words, list them all or completely describe the list.]

Answer:

How would you describe a k-multisubset of [n]?
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Balls and Walls

Question: How many k-multisets
can be made from an n-set?

n = 4
k = 6

— is the same as —

Question: How many ways are there
to place k indistinguishable balls
into n distinguishable bins?

◦◦ ◦◦ ◦ ◦︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸
a b c d

— is the same as —

Question: How many {◦, }-words
contain k balls and (n − 1) walls?

◦◦ ◦◦◦ ◦

— which we can count by: —

Question: How many ways to choose
k ball pos’ns out of k + n − 1 total?

(k+n−1
k

)
=:
((n
k

))
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into n distinguishable bins?

◦◦ ◦◦ ◦ ◦︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸
a b c d

— is the same as —

Question: How many {◦, }-words
contain k balls and (n − 1) walls?

◦◦ ◦◦◦ ◦

— which we can count by: —

Question: How many ways to choose
k ball pos’ns out of k + n − 1 total?

(k+n−1
k

)
=:
((n
k

))
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Answering Q1–Q4

Q4. How many possible orders for a dozen donuts are there when
the store has 30 varieties?

Answer:
(( ))

=
( )

= 7,898,654,920.

Correct order:

Q2. Order 9 baseball players (9!) 362,880
Q3. Pick-6; numbers 1–40

(40
6

)
3,838,380

Q4. 12 donuts from 30
((30
12

))
7,898,654,920

Q1. 8-character passwords (628) 218,340,105,584,896
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Summary

order matters order doesn’t matter
(choose a list) (choose a set)

repetition
allowed

nk
((
n
k

))

repetition
not allowed

(n)k
(
n
k

)
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