Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.

Tool: A **bijection** pairs up the elements of A and B.

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.

Tool: A **bijection** pairs up the elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

```
Set A: \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\}\}
```

Set B: {000, 100, 010, 110, 001, 101, 011, 111 }

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.

Tool: A **bijection** pairs up the elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word):

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.

Tool: A **bijection** pairs up the elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

```
Set A: \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\}\} Bijection: \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow Set B: \{000, 100, 010, 110, 001, 101, 011, 111\}
```

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word):

Difficulties:

- ▶ Finding the rule
- ▶ Proving it is a bijection

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.

Tool: A **bijection** pairs up the elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word):

Difficulties:

- ► Finding the rule (requires rearranging, ordering)
- ▶ Proving it is a bijection (requires logical reasoning).

What is a Function?

Reminder: A **function** f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined to be an element $b \in B$ (write $f: a \mapsto b$).

What is a Function?

Reminder: A **function** f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined to be an element $b \in B$ (write $f: a \mapsto b$).

▶ f is well-defined if for all $a \in A$, $f(a) \in B$ and is unambiguous.

What is a Function?

Reminder: A **function** f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined to be an element $b \in B$ (write $f: a \mapsto b$).

- ▶ f is **well-defined** if for all $a \in A$, $f(a) \in B$ and is unambiguous.
- ▶ *A* is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))

What is a Function?

Reminder: A **function** f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined to be an element $b \in B$ (write $f: a \mapsto b$).

- ▶ f is **well-defined** if for all $a \in A$, $f(a) \in B$ and is unambiguous.
- ▶ *A* is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))
- ▶ The **range** of *f* is the set of values that *f* takes on:

$$\operatorname{rng}(f) = \{b \in B : f(a) = b \text{ for at least one } a \in A\}$$

What is a Function?

Reminder: A **function** f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined to be an element $b \in B$ (write $f: a \mapsto b$).

- ▶ f is well-defined if for all $a \in A$, $f(a) \in B$ and is unambiguous.
- ▶ *A* is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))
- ▶ The **range** of *f* is the set of values that *f* takes on:

$$rng(f) = \{b \in B : f(a) = b \text{ for at least one } a \in A\}$$

Example. Let S be the set of 3-subsets of [n] and let L be the set of 3-lists of [n]. Then define $f:S\to L$ to be the function that takes a 3-subset $\{i_1,i_2,i_3\}\in S$ (with $i_1\leq i_2\leq i_3$) to the list $(i_1,i_2,i_3)\in L$.

Question: Is f well-defined? Is rng(f) = L?

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

Definition: A function $f: A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

Definition: A function $f: A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is ______

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

Definition: A function $f: A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is ______

Give an example of a function that is onto and not one-to-one.

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. We first find two sets of those sizes:

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. We first find two sets of those sizes:

Let A be the set of k-subsets of [n] and (Size =) Let B be the set of (n - k)-subsets of [n]. (Size =)

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. We first find two sets of those sizes:

Let A be the set of k-subsets of [n] and (Size =) Let B be the set of (n - k)-subsets of [n]. (Size =)

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n=5 and k=2.

$$\left\{
 \begin{cases}
 \{1,2\}, \{1,3\} \\
 \{1,4\}, \{1,5\} \\
 \{2,3\}, \{2,4\} \\
 \{2,5\}, \{3,4\} \\
 \{3,5\}, \{4,5\}
 \end{cases}
\right\}
\longleftrightarrow
\left\{
 \begin{cases}
 \{1,2,3\}, \{1,2,4\} \\
 \{1,2,5\}, \{1,3,4\} \\
 \{1,3,5\}, \{1,4,5\} \\
 \{2,3,4\}, \{2,3,5\} \\
 \{2,4,5\}, \{3,4,5\}
 \end{cases}
\right\}$$

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. We first find two sets of those sizes:

Let A be the set of k-subsets of
$$[n]$$
 and $(Size =)$
Let B be the set of $(n - k)$ -subsets of $[n]$. $(Size =)$

Let B be the set of
$$(n - k)$$
-subsets of $[n]$. (Size =)

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n=5 and k=2.

$$\left\{ \begin{array}{l} \{1,2\},\ \{1,3\} \\ \{1,4\},\ \{1,5\} \\ \{2,3\},\ \{2,4\} \\ \{2,5\},\ \{3,4\} \\ \{3,5\},\ \{4,5\} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \{1,2,3\},\ \{1,2,4\} \\ \{1,2,5\},\ \{1,3,4\} \\ \{1,3,5\},\ \{1,4,5\} \\ \{2,3,4\},\ \{2,3,5\} \\ \{2,4,5\},\ \{3,4,5\} \end{array} \right\}$$

Guess: Let S be a k-subset of [n]. Perhaps f(S) =

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then

Step 3: Prove *f* is a bijection.

Strategy. Prove that f is both one-to-one and onto.

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then

Step 3: Prove *f* is a bijection.

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1:

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then

Step 3: Prove *f* is a bijection.

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1:

f is onto:

We conclude that f is a bijection and therefore, $\binom{n}{k} = \binom{n}{n-k}$.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f's **inverse**:

ightharpoonup Determine a rule for a candidate inverse function g.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f's **inverse**:

- ▶ Determine a rule for a candidate inverse function *g*.
- \blacktriangleright Show that f is a well defined function from A to B.
- \blacktriangleright Show that g is a well defined function from B to A.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f's **inverse**:

- ightharpoonup Determine a rule for a candidate inverse function g.
- ► Show that *f* is a well defined function from *A* to *B*.
- \blacktriangleright Show that g is a well defined function from B to A.
- Show that f and g are two-sided inverses: Show for all $a \in A$, g(f(a)) = a

and for all $b \in B$, f(g(b)) = b

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f's **inverse**:

- ▶ Determine a rule for a candidate inverse function *g*.
- \blacktriangleright Show that f is a well defined function from A to B.
- \blacktriangleright Show that g is a well defined function from B to A.
- Show that f and g are two-sided inverses: Show for all $a \in A$, g(f(a)) = a

and for all
$$b \in B$$
, $f(g(b)) = b$

Then both f and g are bijections.

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

```
even: \{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\} odd: \{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}
```

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \begin{cases} S \setminus \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.$$

ightharpoonup f is a well defined function from A to B (why?).

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \begin{cases} S \setminus \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.$$

- ▶ f is a well defined function from A to B (why?).
- ightharpoonup f is also a well defined function from B to A (why?).

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \begin{cases} S \setminus \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.$$

- \blacktriangleright f is a well defined function from A to B (why?).
- ▶ f is also a well defined function from B to A (why?).
- $ightharpoonup f^2$ is the identity function.

Therefore, f is a bijection, proving the statement, as desired.

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \begin{cases} S \setminus \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.$$

- \blacktriangleright f is a well defined function from A to B (why?).
- ▶ f is also a well defined function from B to A (why?).
- $ightharpoonup f^2$ is the identity function.

Therefore, f is a bijection, proving the statement, as desired.

Eyebrow-Raising Consequence:
$$\sum_{k=0}^{n} (-1)^k {n \choose k} = 0.$$

Pascal's identity is the recurrence $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k.

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1		1					
2 3	1			1				
4	1				1			
5 6	1					1		
6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2 3	1	2	1					
1	1			1				
4	1				1			
5	1					1		
6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
2 3 4	1	3	3	1				
4	1				1			
5 6	1					1		
6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2 3	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1					1		
6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Pascal's identity is the recurrence $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$ for all n.

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seg's in Pascal's triangle:

1, 2, 3, 4, 5, ...
$$\binom{n}{1}$$

($a_n = n$)
1, 3, 6, 10, 15, ... $\binom{n}{2}$
triangular
1, 4, 10, 20, 35, ... $\binom{n}{3}$
tetrahedral
1, 2, 6, 20, 70, ... $\binom{2n}{n}$
centr. binom.

Pascal's identity is the recurrence $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$ for all n.

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seq's in Pascal's triangle:

1, 2, 3, 4, 5, ...
$$\binom{n}{1}$$

($a_n = n$) A000027
1, 3, 6, 10, 15, ... $\binom{n}{2}$
triangular A000217
1, 4, 10, 20, 35, ... $\binom{n}{3}$
tetrahedral A000292
1, 2, 6, 20, 70, ... $\binom{2n}{n}$
centr. binom. A000984

Online Encyclopedia of Integer Sequences:

http://oeis.org/

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + y^n.$$

In other words: The *n*-th row of Pascal's triangle contains the coefficients of the terms in the expansion of $(x + y)^n$.

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \cdots + \binom{n}{n-1}xy^{n-1} + y^n.$$

In other words: The *n*-th row of Pascal's triangle contains the coefficients of the terms in the expansion of $(x + y)^n$.

Proof. In the expansion of $(x+y)(x+y)\cdots(x+y)$, in how many ways can a term have the form $x^{n-k}y^k$?

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + y^n.$$

In other words: The *n*-th row of Pascal's triangle contains the coefficients of the terms in the expansion of $(x + y)^n$.

Proof. In the expansion of $(x+y)(x+y)\cdots(x+y)$, in how many ways can a term have the form $x^{n-k}y^k$?

Question: What happens when x = 1 and y = -1?