Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.
Tool: A bijection pairs up the elements of A and B.

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.
Tool: A bijection pairs up the elements of A and B.
Example. The set A of subsets of $\left\{s_{1}, s_{2}, s_{3}\right\}$ are in bijection with the set B of binary words of length 3.

Set A: $\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\},\left\{s_{1}, s_{3}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$
Set B: $\{000,100,010,110,001,101,011,111\}$

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.
Tool: A bijection pairs up the elements of A and B.
Example. The set A of subsets of $\left\{s_{1}, s_{2}, s_{3}\right\}$ are in bijection with the set B of binary words of length 3.

Set A: $\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\},\left\{s_{1}, s_{3}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$

Set B: $\{000,100,010,110,001,101,011,111\}$
Rule: Given $a \in A,(a$ is a subset), define $b \in B$ (b is a word):

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.
Tool: A bijection pairs up the elements of A and B.
Example. The set A of subsets of $\left\{s_{1}, s_{2}, s_{3}\right\}$ are in bijection with the set B of binary words of length 3.

Set $A:\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\},\left\{s_{1}, s_{3}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$

Set B: $\{000,100,010,110,001,101,011,111\}$
Rule: Given $a \in A,(a$ is a subset), define $b \in B$ (b is a word):
Difficulties:

- Finding the rule
- Proving it is a bijection

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.
Tool: A bijection pairs up the elements of A and B.
Example. The set A of subsets of $\left\{s_{1}, s_{2}, s_{3}\right\}$ are in bijection with the set B of binary words of length 3 .

Set A: $\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\},\left\{s_{1}, s_{3}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$

Set B: $\{000,100,010,110,001,101,011,111\}$
Rule: Given $a \in A,(a$ is a subset), define $b \in B$ (b is a word):
Difficulties:

- Finding the rule (requires rearranging, ordering)
- Proving it is a bijection (requires logical reasoning).

What is a Function?

Reminder: A function f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A, f(a)$ is defined to be an element $b \in B$ (write $f: a \mapsto b$).

What is a Function?

Reminder: A function f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A, f(a)$ is defined to be an element $b \in B$ (write $f: a \mapsto b$).

- f is well-defined if for all $a \in A, f(a) \in B$ and is unambiguous.

What is a Function?

Reminder: A function f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A, f(a)$ is defined to be an element $b \in B$ (write $f: a \mapsto b$).

- f is well-defined if for all $a \in A, f(a) \in B$ and is unambiguous.
- A is called the domain. (We write $A=\operatorname{dom}(f)$)
- B is called the codomain. (We write $B=\operatorname{cod}(f)$)

What is a Function?

Reminder: A function f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A, f(a)$ is defined to be an element $b \in B$ (write $f: a \mapsto b$).

- f is well-defined if for all $a \in A, f(a) \in B$ and is unambiguous.
- A is called the domain. (We write $A=\operatorname{dom}(f)$)
- B is called the codomain. (We write $B=\operatorname{cod}(f)$)
- The range of f is the set of values that f takes on:

$$
\operatorname{rng}(f)=\{b \in B: f(a)=b \text { for at least one } a \in A\}
$$

What is a Function?

Reminder: A function f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A, f(a)$ is defined to be an element $b \in B$ (write $f: a \mapsto b$).

- f is well-defined if for all $a \in A, f(a) \in B$ and is unambiguous.
- A is called the domain. (We write $A=\operatorname{dom}(f)$)
- B is called the codomain. (We write $B=\operatorname{cod}(f)$)
- The range of f is the set of values that f takes on:

$$
\operatorname{rng}(f)=\{b \in B: f(a)=b \text { for at least one } a \in A\}
$$

Example. Let S be the set of 3-subsets of $[n]$ and let L be the set of 3-lists of $[n]$. Then define $f: S \rightarrow L$ to be the function that takes a 3-subset $\left\{i_{1}, i_{2}, i_{3}\right\} \in S$ (with $\left.i_{1} \leq i_{2} \leq i_{3}\right)$ to the list $\left(i_{1}, i_{2}, i_{3}\right) \in L$.
Question: Is f well-defined? Is $\operatorname{rng}(f)=L$?

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
"When the inputs are different, the outputs are different." (picture)

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
"When the inputs are different, the outputs are different." (picture)
Definition: A function $f: A \rightarrow B$ is onto (a surjection) when
For each $b \in B$, there exists some $a \in A$ such that $f(a)=b$.
"Every output gets hit."

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
"When the inputs are different, the outputs are different." (picture)
Definition: A function $f: A \rightarrow B$ is onto (a surjection) when
For each $b \in B$, there exists some $a \in A$ such that $f(a)=b$.
"Every output gets hit."
Definition: A function $f: A \rightarrow B$ is a bijection if it is both one-to-one and onto.

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
"When the inputs are different, the outputs are different." (picture)
Definition: A function $f: A \rightarrow B$ is onto (a surjection) when For each $b \in B$, there exists some $a \in A$ such that $f(a)=b$.
"Every output gets hit."
Definition: A function $f: A \rightarrow B$ is a bijection if it is both one-to-one and onto.

The function from the previous page is \qquad .

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
"When the inputs are different, the outputs are different." (picture)
Definition: A function $f: A \rightarrow B$ is onto (a surjection) when For each $b \in B$, there exists some $a \in A$ such that $f(a)=b$.
"Every output gets hit."
Definition: A function $f: A \rightarrow B$ is a bijection if it is both one-to-one and onto.

The function from the previous page is \qquad .

Give an example of a function that is onto and not one-to-one.

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k}=\binom{n}{n-k}$ for $0 \leq k \leq n$.
Proof. We first find two sets of those sizes:

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k}=\binom{n}{n-k}$ for $0 \leq k \leq n$.
Proof. We first find two sets of those sizes:
Let A be the set of k-subsets of $[n]$ and
Let B be the set of $(n-k)$-subsets of $[n]$.
$($ Size $=\quad)$
$($ Size $=\quad)$

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k}=\binom{n}{n-k}$ for $0 \leq k \leq n$.
Proof. We first find two sets of those sizes:
Let A be the set of k-subsets of $[n]$ and
Let B be the set of $(n-k)$-subsets of $[n]$.
Step 1: Find a candidate bijection.
Strategy. Try out a small (enough) example. Try $n=5$ and $k=2$.

$$
\left\{\begin{array}{l}
\{1,2\},\{1,3\} \\
\{1,4\},\{1,5\} \\
\{2,3\},\{2,4\} \\
\{2,5\},\{3,4\} \\
\{3,5\},\{4,5\}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}
\{1,2,3\},\{1,2,4\} \\
\{1,2,5\},\{1,3,4\} \\
\{1,3,5\},\{1,4,5\} \\
\{2,3,4\},\{2,3,5\} \\
\{2,4,5\},\{3,4,5\}
\end{array}\right\}
$$

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k}=\binom{n}{n-k}$ for $0 \leq k \leq n$.
Proof. We first find two sets of those sizes:
Let A be the set of k-subsets of $[n]$ and $\quad($ Size $=\quad)$
Let B be the set of $(n-k)$-subsets of $[n] . \quad($ Size $=)$
Step 1: Find a candidate bijection.
Strategy. Try out a small (enough) example. Try $n=5$ and $k=2$.

$$
\left\{\begin{array}{l}
\{1,2\},\{1,3\} \\
\{1,4\},\{1,5\} \\
\{2,3\},\{2,4\} \\
\{2,5\},\{3,4\} \\
\{3,5\},\{4,5\}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}
\{1,2,3\},\{1,2,4\} \\
\{1,2,5\},\{1,3,4\} \\
\{1,3,5\},\{1,4,5\} \\
\{2,3,4\},\{2,3,5\} \\
\{2,4,5\},\{3,4,5\}
\end{array}\right\}
$$

Guess: Let S be a k-subset of $[n]$. Perhaps $f(S)=$ \qquad .

Proving a Bijection

Step 2: Prove f is well defined.
The function f is well defined. If S is any k-subset of $[n]$, then

Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of $[n]$, then

Step 3: Prove f is a bijection.
Strategy. Prove that f is both one-to-one and onto.

Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of $[n]$, then

Step 3: Prove f is a bijection.
Strategy. Prove that f is both one-to-one and onto.
f is 1-to-1:

Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of $[n]$, then

Step 3: Prove f is a bijection.
Strategy. Prove that f is both one-to-one and onto.
f is 1-to-1:
f is onto:

We conclude that f is a bijection and therefore, $\binom{n}{k}=\binom{n}{n-k}$.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f 's inverse:

- Determine a rule for a candidate inverse function g.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f 's inverse:

- Determine a rule for a candidate inverse function g.
- Show that f is a well defined function from A to B.
- Show that g is a well defined function from B to A.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f 's inverse:

- Determine a rule for a candidate inverse function g.
- Show that f is a well defined function from A to B.
- Show that g is a well defined function from B to A.
- Show that f and g are two-sided inverses:

Show for all $a \in A, g(f(a))=a$
and for all $b \in B, f(g(b))=b$

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f 's inverse:

- Determine a rule for a candidate inverse function g.
- Show that f is a well defined function from A to B.
- Show that g is a well defined function from B to A.
- Show that f and g are two-sided inverses:

Show for all $a \in A, g(f(a))=a$ and for all $b \in B, f(g(b))=b$
Then both f and g are bijections.

Using the inverse function

Example. There exists as many even-sized subsets of $[n]$ as odd-sized subsets of $[n]$.

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

$$
\begin{aligned}
& \text { even: }\left\{\emptyset,\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{3}\right\}, \quad\left\{s_{2}, s_{3}\right\}\right. \\
& \text { odd: }\left\{\left\{s_{1}\right\}, \quad\left\{s_{2}\right\}, \quad\left\{s_{3}\right\}, \quad\left\{s_{1}, s_{2}, s_{3}\right\}\right\}
\end{aligned}
$$

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].
even: $\left\{\emptyset,\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{3}\right\}, \quad\left\{s_{2}, s_{3}\right\}\right.$
odd: $\left\{\left\{s_{1}\right\},\left\{s_{2}\right\}, \quad\left\{s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$
Proof. Let A be the set of even-sized subsets of $[n]$ and let B be the set of odd-sized subsets of $[n]$. Consider the function

$$
f(S)=\left\{\begin{array}{ll}
S \backslash\{1\} & \text { if } 1 \in S \\
S \cup\{1\} & \text { if } 1 \notin S
\end{array}\right\}
$$

- f is a well defined function from A to B (why?).

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].
even: $\left\{\emptyset,\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{3}\right\}, \quad\left\{s_{2}, s_{3}\right\}\right.$
odd: $\left\{\left\{s_{1}\right\},\left\{s_{2}\right\}, \quad\left\{s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$
Proof. Let A be the set of even-sized subsets of $[n]$ and let B be the set of odd-sized subsets of $[n]$. Consider the function

$$
f(S)=\left\{\begin{array}{ll}
S \backslash\{1\} & \text { if } 1 \in S \\
S \cup\{1\} & \text { if } 1 \notin S
\end{array}\right\}
$$

- f is a well defined function from A to B (why?).
- f is also a well defined function from B to A (why?).

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

$$
\begin{aligned}
& \text { even: }\left\{\emptyset, \quad\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{3}\right\}, \quad\left\{s_{2}, s_{3}\right\}\right. \\
& \text { odd: }\left\{\left\{s_{1}\right\}, \quad\left\{s_{2}\right\}, \quad\left\{s_{3}\right\}, \quad\left\{s_{1}, s_{2}, s_{3}\right\}\right\}
\end{aligned}
$$

Proof. Let A be the set of even-sized subsets of $[n]$ and let B be the set of odd-sized subsets of $[n]$. Consider the function

$$
f(S)=\left\{\begin{array}{ll}
S \backslash\{1\} & \text { if } 1 \in S \\
S \cup\{1\} & \text { if } 1 \notin S
\end{array}\right\}
$$

- f is a well defined function from A to B (why?).
- f is also a well defined function from B to A (why?).
- f^{2} is the identity function.

Therefore, f is a bijection, proving the statement, as desired.

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

$$
\begin{aligned}
& \text { even: }\left\{\emptyset,\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{3}\right\}, \quad\left\{s_{2}, s_{3}\right\}\right\} \\
& \text { odd: }\left\{\left\{s_{1}\right\}, \quad\left\{s_{2}\right\}, \quad\left\{s_{3}\right\}, \quad\left\{s_{1}, s_{2}, s_{3}\right\}\right\}
\end{aligned}
$$

Proof. Let A be the set of even-sized subsets of $[n]$ and let B be the set of odd-sized subsets of [n]. Consider the function

$$
f(S)=\left\{\begin{array}{ll}
S \backslash\{1\} & \text { if } 1 \in S \\
S \cup\{1\} & \text { if } 1 \notin S
\end{array}\right\}
$$

- f is a well defined function from A to B (why?).
- f is also a well defined function from B to A (why?).
- f^{2} is the identity function.

Therefore, f is a bijection, proving the statement, as desired.
Eyebrow-Raising Consequence: $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$.

Pascal's triangle

Pascal's identity is the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k.

Pascal's triangle

Pascal's identity is the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n{ }^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1		1					
3	1			1				
4	1				1			
5	1					1		
6	1						1	
7	1							1

Pascal's triangle

Pascal's identity is the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n{ }^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1			1				
4	1				1			
5	1					1		
6	1						1	
7	1							1

Pascal's triangle

Pascal's identity is the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n{ }^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1				1			
5	1					1		
6	1						1	
7	1							1

Pascal's triangle

Pascal's identity is the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n{ }^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1					1		
6	1						1	
7	1							1

Pascal's triangle

Pascal's identity is the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n{ }^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Pascal's triangle

Pascal's identity is the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n{ }^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seq's in Pascal's triangle:

$$
\begin{array}{cc}
1,2,3,4,5, \ldots & \binom{n}{1} \\
\left(a_{n}=n\right) & \\
1,3,6,10,15, \ldots & \binom{n}{2} \\
\quad \text { triangular } \\
1,4,10,20,35, \ldots & \binom{n}{3} \\
\text { tetrahedral } \\
1,2,6,20,70, \ldots & \binom{2 n}{n} \\
\begin{array}{c}
\text { entr. binom. }
\end{array} &
\end{array}
$$

Pascal's triangle

Pascal's identity is the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n \backslash^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seq's in Pascal's triangle:

$$
\begin{array}{cc}
1,2,3,4,5, \ldots & \binom{n}{1} \\
\left(a_{n}=n\right) & \\
1,30,6,10,15, \ldots & \binom{n}{2} \\
\text { triangular } & \text { A000217 } \\
1,4,10,20,35, \ldots & \binom{n}{3} \\
\text { tetrahedral } & \text { A000292 } \\
1,2,6,20,70, \ldots & \binom{2 n}{n} \\
\text { centr. binom. } & \text { A000984 }
\end{array}
$$

Online Encyclopedia of Integer Sequences: http://oeis.org/

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+y^{n} .
$$

In other words: The n-th row of Pascal's triangle contains the coefficients of the terms in the expansion of $(x+y)^{n}$.

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+y^{n} .
$$

In other words: The n-th row of Pascal's triangle contains the coefficients of the terms in the expansion of $(x+y)^{n}$.

Proof. In the expansion of $(x+y)(x+y) \cdots(x+y)$, in how many ways can a term have the form $x^{n-k} y^{k}$?

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+y^{n} .
$$

In other words: The n-th row of Pascal's triangle contains the coefficients of the terms in the expansion of $(x+y)^{n}$.

Proof. In the expansion of $(x+y)(x+y) \cdots(x+y)$, in how many ways can a term have the form $x^{n-k} y^{k}$?

Question: What happens when $x=1$ and $y=-1$?

