Question: In how many ways can we place k objects in n boxes?

Question: In how many ways can we place k objects in n boxes? *Answer:* It depends.

Question: In how many ways can we place k objects in n boxes?

Answer: It depends.

- ▶ What do the objects look like?
 - ▶ Do the objects all look the same?

Question: In how many ways can we place k objects in n boxes?

Answer: It depends.

- What do the objects look like?
 - ▶ Do the objects all look the same?
- What do the boxes look like?
 - Do the boxes all look the same?

Question: In how many ways can we place k objects in n boxes?

Answer: It depends.

- What do the objects look like?
 - ▶ Do the objects all look the same?
- What do the boxes look like?
 - Do the boxes all look the same?
- ▶ Are there any restrictions?
 - ▶ Is there a size limit?
 - Must there be an object in each box?

Definition: A distribution is an assignment of objects to recipients.

Certain counting problems can be revisited in this framework:

$$\left\{ \begin{array}{c} \text{Five-letter passwords} \\ \text{on } \left\{ A, B, C, D, E, F, G \right\} \end{array} \right\} \text{ correspond to } \left\{ \begin{array}{c} \text{Distributions of} \\ \underline{\quad} \text{ distinct objects} \\ \text{into } \underline{\quad} \text{ distinct boxes} \end{array} \right\}$$

Definition: A distribution is an assignment of objects to recipients.

Certain counting problems can be revisited in this framework:

$$\left\{ \begin{array}{c} \mathsf{Five-letter passwords} \\ \mathsf{on} \left\{ A, B, C, D, E, F, G \right\} \\ \end{array} \right\} \text{ correspond to } \left\{ \begin{array}{c} \mathsf{Distributions of} \\ _ & \mathsf{distinct objects} \\ \mathsf{into} _ & \mathsf{distinct boxes} \end{array} \right\}$$

What are candidates for objects, boxes?

Definition: A distribution is an assignment of objects to recipients.

Certain counting problems can be revisited in this framework:

$$\left\{ \begin{array}{c} \text{Five-letter passwords} \\ \text{on } \left\{ A, B, C, D, E, F, G \right\} \end{array} \right\} \text{ correspond to } \left\{ \begin{array}{c} \text{Distributions of} \\ \underline{\quad} \text{ distinct objects} \\ \text{into } \underline{\quad} \text{ distinct boxes} \end{array} \right\}$$

What are candidates for objects, boxes?

► View as a function

Definition: A distribution is an assignment of objects to recipients.

Certain counting problems can be revisited in this framework:

 $\left\{ \begin{array}{c} \text{Five-letter passwords} \\ \text{on } \left\{ A, B, C, D, E, F, G \right\} \end{array} \right\} \text{ correspond to } \left\{ \begin{array}{c} \text{Distributions of} \\ \underline{\quad} \text{ distinct objects} \\ \text{into } \underline{\quad} \text{ distinct boxes} \end{array} \right\}$

What are candidates for objects, boxes?

► View as a function

Definition: A distribution is an assignment of objects to recipients.

Certain counting problems can be revisited in this framework:

What are candidates for objects, boxes?

► View as a function

View as a distribution

Find the restriction

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none ≤ 1 ≥ 1 $= 1$			=1
distinct	distinct				
identical	distinct				
distinct	identical				
identical	identical				

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none ≤ 1 ≥ 1 $= 1$			=1
distinct	distinct				
identical	distinct				
distinct	identical				
identical	identical				

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none ≤ 1 ≥ 1 $= 1$			=1
distinct	distinct				
identical	distinct				
distinct	identical				
identical	identical				

- n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrict	Restrictions on $\#$ objects received			
k objects	n boxes	none ≤ 1 ≥ 1 $= 1$				
distinct	distinct	n ^k	$(n)_k$			
identical	distinct					
distinct	identical					
identical	identical					

- n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrict	Restrictions on $\#$ objects received			
k objects	n boxes	none ≤ 1 ≥ 1 $= 1$				
distinct	distinct	n ^k	$(n)_k$			
identical	distinct					
distinct	identical					
identical	identical					

- n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- ▶ *n*!: Permutations. What about when $n \neq k$?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none ≤ 1 ≥ 1 $= 1$			
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0
identical	distinct				
distinct	identical				
identical	identical				

- n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- ▶ *n*!: Permutations. What about when $n \neq k$?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrict	Restrictions on $\#$ objects received			
k objects	n boxes	none ≤ 1 ≥ 1 $= 1$				
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0	
identical	distinct					
distinct	identical					
identical	identical					

- n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- ▶ *n*!: Permutations. What about when $n \neq k$?
- ▶ $\binom{n}{k}$: Objects _____, Boxes ____, ____.
- (ⁿ_k): Objects _____, Boxes ____,
 ____.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrict	Restrictions on $\#$ objects received			
k objects	n boxes	none ≤ 1 ≥ 1 $= 1$				
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$			
distinct	identical					
identical	identical					

- n^k : Objects distinct, Boxes distinct, no restriction.
- ▶ $(n)_k$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- ▶ *n*!: Permutations. What about when $n \neq k$?
- ▶ $\binom{n}{k}$: Objects _____, Boxes ____, ____.
- (ⁿ_k): Objects _____, Boxes ____,
 ____.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrict	Restrictions on $\#$ objects received			
k objects	n boxes	none ≤ 1 ≥ 1 $= 1$				
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$			
distinct	identical					
identical	identical					

We can also fill in these answers:

• Objects identical, Boxes distinct, ≥ 1 object per box:

▶ Objects identical, Boxes distinct, = 1 object per box:

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none	none ≤ 1 ≥ 1		
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical				
identical	identical				

We can also fill in these answers:

• Objects identical, Boxes distinct, ≥ 1 object per box:

▶ Objects identical, Boxes distinct, = 1 object per box:

Distinct objects in indistinguishable boxes

When placing *k* distinguishable objects into *n* indistinguishable boxes, what matters?

Distinct objects in indistinguishable boxes

When placing *k* distinguishable objects into *n* indistinguishable boxes, what matters?

- ▶ Each object needs to be in some box.
- ▶ No object is in two boxes.

We have rediscovered

Distinct objects in indistinguishable boxes

When placing *k* distinguishable objects into *n* indistinguishable boxes, what matters?

- ▶ Each object needs to be in some box.
- ▶ No object is in two boxes.

We have rediscovered

So ask "How many set partitions are there of a set with *k* objects?" Or even, "How many set partitions are there of *k* objects into *n* parts?"

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i **non-empty** subsets. Notation: S(k, i) or ${k \atop i} \leftarrow$ **Careful about this order!**

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i **non-empty** subsets. Notation: S(k, i) or ${k \atop i} \leftarrow$ **Careful about this order!**

k	${k \atop 0}{k \atop 1}$	$\binom{k}{2}$	$\binom{k}{3}$	$\binom{k}{4}$	$\binom{k}{5}$	$\binom{k}{6}$	$\binom{k}{7}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i **non-empty** subsets. Notation: S(k, i) or ${k \atop i} \leftarrow$ **Careful about this order!**

k	${k \atop 0}{k \atop 1}$	$\binom{k}{2}$	$\binom{k}{3}$	$\binom{k}{4}$	$\binom{k}{5}$	$\binom{k}{6}$	$\binom{k}{7}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle:

$$\begin{split} S(k,1) &= S(k,k) = 1.\\ S(k,2) &= 2^{k-1} - 1.\\ S(k,k-1) &= \binom{k}{2}. \end{split}$$

Later: Formula for S(k, i).

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i **non-empty** subsets. Notation: S(k, i) or ${k \atop i} \leftarrow$ **Careful about this order!**

k	${\binom{k}{0}}{\binom{k}{1}}$	$\binom{k}{2}$	$\binom{k}{3}$	$\binom{k}{4}$	$\binom{k}{5}$	$\binom{k}{6}$	$\binom{k}{7}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle:

$$S(k, 1) = S(k, k) = 1.$$

$$S(k, 2) = 2^{k-1} - 1.$$

$$S(k, k-1) = \binom{k}{2}.$$

Later: Formula for S(k, i).

To fill in the table, find a recurrence for S(k, i):

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i **non-empty** subsets. Notation: S(k, i) or ${k \atop i} \leftarrow$ **Careful about this order!**

k	${\binom{k}{0}}{\binom{k}{1}}$	$\binom{k}{2}$	$\binom{k}{3}$	$\binom{k}{4}$	$\binom{k}{5}$	$\binom{k}{6}$	$\binom{k}{7}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle: S(k, 1) = S(k, k) = 1. $S(k, 2) = 2^{k-1} - 1.$ $S(k, k-1) = {k \choose 2}.$

Later: Formula for S(k, i).

To fill in the table, find a recurrence for S(k, i):

Ask: In how many ways can we place k objects into i boxes? We'll condition on the placement of element #i:

Question: In how many ways can we place k objects in n boxes?

Distribut	tions of	Restrictions on $\#$ objects received			
k objects	n boxes	none	≤ 1	≥ 1	=1
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical				
identical	identical				

S(k, n) counts ways to place k distinct obj. into n identical boxes.

Question: In how many ways can we place k objects in n boxes?

Distribut	tions of	Restrictions on # objects received			
k objects	n boxes	none	≤ 1	≥ 1	=1
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}		<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical			S(k, n)	
identical	identical				

S(k, n) counts ways to place k distinct obj. into n identical boxes.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none	≤ 1	≥ 1	=1
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}		<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical			S(k, n)	
identical	identical				

S(k, n) counts ways to place k distinct obj. into n identical boxes. What if we then label the boxes?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects n boxes		none	≤ 1	≥ 1	= 1
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}	n!S(k,n)	<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical			S(k, n)	
identical	identical				

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes? (In this case, we are counting

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects n boxes		none	≤ 1	≥ 1	= 1
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}	n!S(k,n)	<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical			S(k, n)	
identical	identical				

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

(In this case, we are counting onto functions $[k] \rightarrow [n]$.)

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects n boxes		none	≤ 1	≥ 1	= 1
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}	n!S(k,n)	<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical			S(k, n)	
identical	identical				

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

(In this case, we are counting onto functions $[k] \rightarrow [n]$.)

How many ways to distribute distinct objects into identical boxes:

▶ If there is exactly one item in each box?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received				
k objects n boxes		none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical			S(k, n)	1 or 0	
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

(In this case, we are counting onto functions $[k] \rightarrow [n]$.)

How many ways to distribute distinct objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received				
k objects n boxes		none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical		1 or 0	S(k, n)	1 or 0	
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

(In this case, we are counting onto functions $[k] \rightarrow [n]$.)

How many ways to distribute distinct objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?
- ▶ What about with no restrictions?

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received				
k objects	n boxes	none	=1			
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical	$\sum S(k,i)$	1 or 0	S(k, n)	1 or 0	
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

(In this case, we are counting onto functions $[k] \rightarrow [n]$.)

How many ways to distribute distinct objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?
- ▶ What about with no restrictions? $(n \ge k \rightsquigarrow \text{Bell number } B_k)$

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have $B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$.

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$$
.

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$$
.

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

 $B_{k} = \binom{k-1}{0}B_{0} + \binom{k-1}{1}B_{1} + \cdots + \binom{k-1}{k-1}B_{k-1}.$

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$$
.

Theorem 2.3.3. The Bell numbers satisfy a recurrence: $B_{k} = \binom{k-1}{0}B_{0} + \binom{k-1}{1}B_{1} + \dots + \binom{k-1}{k-1}B_{k-1}.$

Proof: How many partitions of $\{1, \ldots, k\}$ are there? LHS: B_k , obviously. RHS:

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$$
.

Theorem 2.3.3. The Bell numbers satisfy a recurrence: $B_{k} = {\binom{k-1}{0}}B_{0} + {\binom{k-1}{1}}B_{1} + \dots + {\binom{k-1}{k-1}}B_{k-1}.$

Proof: How many partitions of $\{1, \ldots, k\}$ are there? LHS: B_k , obviously.

RHS: Condition on the box containing the last element k:

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$$
.

Theorem 2.3.3. The Bell numbers satisfy a recurrence: $B_{k} = \binom{k-1}{2}B_{0} + \binom{k-1}{1}B_{1} + \dots + \binom{k-1}{k-1}B_{k-1}.$

Proof: How many partitions of $\{1, \ldots, k\}$ are there? LHS: B_k , obviously.

RHS: Condition on the box containing the last element k: (How many partitions of [k] contain i elements in the box with k?)

When placing *k* indistinguishable objects into *n* indistinguishable boxes, what matters?

When placing *k* indistinguishable objects into *n* indistinguishable boxes, what matters?

▶ We are partitioning the **integer** *k* instead of the **set** [*k*]. Example. What are the partitions of 6?

When placing k indistinguishable objects into n indistinguishable boxes, what matters?

► We are partitioning the integer k instead of the set [k]. Example. What are the partitions of 6?

Definition: P(k, i) is the number of partitions of k into i parts. Example. We saw P(6, 1) = 1, P(6, 2) = 3, P(6, 3) = 3, P(6, 4) = 2, P(6, 5) = 1, and P(6, 6) = 1.

When placing k indistinguishable objects into n indistinguishable boxes, what matters?

► We are partitioning the integer k instead of the set [k].
Example. What are the partitions of 6?

Definition: P(k, i) is the number of partitions of k into i parts. Example. We saw P(6, 1) = 1, P(6, 2) = 3, P(6, 3) = 3, P(6, 4) = 2, P(6, 5) = 1, and P(6, 6) = 1.

Definition: P(k) is the number of partitions of k into any number of parts.

Example. P(6) = 1 + 3 + 3 + 2 + 1 + 1 = 11.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical	$\sum S(k,i)$	1 or 0	S(k, n)	1 or 0	
identical	identical					

P(k, n) counts ways to place k identical obj. into n identical boxes.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none	= 1		
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}	n!S(k,n)	<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k,i)$	1 or 0	S(k, n)	1 or 0
identical	identical			P(k, n)	

P(k, n) counts ways to place k identical obj. into n identical boxes.

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none	≥ 1	= 1	
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}	n!S(k,n)	<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k,i)$	1 or 0	S(k,n)	1 or 0
identical	identical			P(k, n)	

P(k, n) counts ways to place k identical obj. into n identical boxes.

How many ways to distribute identical objects into identical boxes:

If there is exactly one item in each box?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none	≤ 1	≥ 1	= 1
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}	n!S(k,n)	<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k,i)$	1 or 0	S(k,n)	1 or 0
identical	identical			P(k, n)	1 or 0

P(k, n) counts ways to place k identical obj. into n identical boxes.

How many ways to distribute identical objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none	= 1		
distinct	distinct	n ^k	(<i>n</i>) _{<i>k</i>}	n!S(k,n)	<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k,i)$	1 or 0	S(k, n)	1 or 0
identical	identical		1 or 0	P(k, n)	1 or 0

P(k, n) counts ways to place k identical obj. into n identical boxes.

How many ways to distribute identical objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?
- ▶ What about with no restrictions?

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on $\#$ objects received			
k objects	n boxes	none	≤ 1	≥ 1	= 1
distinct	distinct	n ^k	$(n)_k$	n!S(k,n)	<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k,i)$	1 or 0	S(k, n)	1 or 0
identical	identical	$\sum P(k,i)$	1 or 0	P(k,n)	1 or 0

P(k, n) counts ways to place k identical obj. into n identical boxes.

How many ways to distribute identical objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?
- ▶ What about with no restrictions?

(This is the # of integer partitions of k into at most n parts.)