More about partitions

- Use greek letters to denote partitions, often λ ("lambda"), μ ("mu"), and ν ("nu").
- Notation: $\lambda: n=n_{1}+n_{2}+\cdots+n_{k}$ or $\lambda \vdash n$.

More about partitions

- Use greek letters to denote partitions, often λ ("lambda"), μ ("mu"), and ν ("nu").
- Notation: $\lambda: n=n_{1}+n_{2}+\cdots+n_{k}$ or $\lambda \vdash n$.
- Write the parts of a partition in non-increasing order:

For example, $\lambda: 5=3+1+1$, or $\lambda=311$, or $\lambda=3^{1} 1^{2}$, or $311 \vdash 5$.

More about partitions

- Use greek letters to denote partitions, often λ ("lambda"), μ ("mu"), and ν ("nu").
- Notation: $\lambda: n=n_{1}+n_{2}+\cdots+n_{k}$ or $\lambda \vdash n$.
- Write the parts of a partition in non-increasing order:

For example, $\lambda: 5=3+1+1$, or $\lambda=311$, or $\lambda=3^{1} 1^{2}$, or $311 \vdash 5$.
A pictoral representation of $\lambda=n_{1} n_{2} \cdots n_{k}$ is its Ferrers diagram, a left-justified array of dots with k rows, containing n_{i} dots in row i.

Example. The

Ferrers diagram of $42211 \vdash 10$ is

More about partitions

- Use greek letters to denote partitions, often λ ("lambda"), μ ("mu"), and ν ("nu").
- Notation: $\lambda: n=n_{1}+n_{2}+\cdots+n_{k}$ or $\lambda \vdash n$.
- Write the parts of a partition in non-increasing order:

For example, $\lambda: 5=3+1+1$, or $\lambda=311$, or $\lambda=3^{1} 1^{2}$, or $311 \vdash 5$.
A pictoral representation of $\lambda=n_{1} n_{2} \cdots n_{k}$ is its Ferrers diagram, a left-justified array of dots with k rows, containing n_{i} dots in row i.
Example. The - - - The conjugate of a partition λ
Ferrers diagram - \quad is the partition λ^{c} which
of $42211 \vdash 10$ is - - \quad interchanges rows and columns.

More about partitions

- Use greek letters to denote partitions, often λ ("lambda"), μ ("mu"), and ν ("nu").
- Notation: $\lambda: n=n_{1}+n_{2}+\cdots+n_{k}$ or $\lambda \vdash n$.
- Write the parts of a partition in non-increasing order:

For example, $\lambda: 5=3+1+1$, or $\lambda=311$, or $\lambda=3^{1} 1^{2}$, or $311 \vdash 5$.
A pictoral representation of $\lambda=n_{1} n_{2} \cdots n_{k}$ is its Ferrers diagram, a left-justified array of dots with k rows, containing n_{i} dots in row i.

$$
\begin{aligned}
& \text { Example. The • - - The conjugate of a partition } \lambda \\
& \text { Ferrers diagram } \\
& \text { of } 42211 \vdash 10 \text { is } \\
& \text { is the partition } \lambda^{c} \text { which } \\
& \text { interchanges rows and columns. } \\
& \text { Some partitions are } \\
& \text { self-conjugate, satisfying } \lambda=\lambda^{c} \text {. }
\end{aligned}
$$

A generating function for partitions

Our original basketball example shows the generating function for the number of ways to partition an integer into parts of size 1,2 , or 3 is

$$
\frac{1}{(1-x)} \frac{1}{\left(1-x^{2}\right)} \frac{1}{\left(1-x^{3}\right)}
$$

A generating function for partitions

Our original basketball example shows the generating function for the number of ways to partition an integer into parts of size 1,2 , or 3 is

$$
\frac{1}{(1-x)} \frac{1}{\left(1-x^{2}\right)} \frac{1}{\left(1-x^{3}\right)}
$$

Now allow parts of any size! Let $P(n)$ be the number of partitions of the integer n. Then

$$
\sum_{n \geq 0} P(n) x^{n}=
$$

A generating function for partitions

Our original basketball example shows the generating function for the number of ways to partition an integer into parts of size 1,2 , or 3 is

$$
\frac{1}{(1-x)} \frac{1}{\left(1-x^{2}\right)} \frac{1}{\left(1-x^{3}\right)}
$$

Now allow parts of any size! Let $P(n)$ be the number of partitions of the integer n. Then

$$
\sum_{n \geq 0} P(n) x^{n}=
$$

Notes:

- Infinite product! But, for any n only finitely many terms involved.

A generating function for partitions

Our original basketball example shows the generating function for the number of ways to partition an integer into parts of size 1,2 , or 3 is

$$
\frac{1}{(1-x)} \frac{1}{\left(1-x^{2}\right)} \frac{1}{\left(1-x^{3}\right)}
$$

Now allow parts of any size! Let $P(n)$ be the number of partitions of the integer n. Then

$$
\sum_{n \geq 0} P(n) x^{n}=
$$

Notes:

- Infinite product! But, for any n only finitely many terms involved.
- Understand each factor in the product well to find a generating function for a subset of partitions.

A generating function for partitions

Our original basketball example shows the generating function for the number of ways to partition an integer into parts of size 1,2 , or 3 is

$$
\frac{1}{(1-x)} \frac{1}{\left(1-x^{2}\right)} \frac{1}{\left(1-x^{3}\right)}
$$

Now allow parts of any size! Let $P(n)$ be the number of partitions of the integer n. Then

$$
\sum_{n \geq 0} P(n) x^{n}=
$$

Notes:

- Infinite product! But, for any n only finitely many terms involved.
- Understand each factor in the product well to find a generating function for a subset of partitions.
- The generating function is beautiful! But no nice formula!

A formula for integer partitions

Bruinier and Ono (2011) found an algebraic formula for the partition function $P(n)$ as a finite sum of algebraic numbers as follows. Define the weight-2 meromorphic modular form $F(z)$ by

$$
\begin{equation*}
F(z)=\frac{1}{2} \frac{E_{2}(z)-2 E_{2}(2 z)-3 E_{2}(3 z)+6 E_{2}(6 z)}{\eta^{2}(z) \eta^{2}(2 z) \eta^{2}(3 z) \eta^{3}(6 z)} \tag{27}
\end{equation*}
$$

were $q=e^{2 \pi i z}, E_{2}(q)$ is an Eisenstein series, and $\eta(q)$ is a Dedekind eta function. Now define

$$
\begin{equation*}
R(z)=-\left(\frac{1}{2 \pi i} \frac{d}{d z}+\frac{1}{2 \pi y}\right) F(z) \tag{28}
\end{equation*}
$$

where $z=x+i y$. Additionally let Q_{n} be any set of representatives of the equivalence classes of the integral binary quadratic form $Q(x, y)=a x^{2}+b x y+c y^{2}$ such that $6 \mid a$ with $a>0$ and $b \equiv 1(\bmod 12)$, and for each $Q(x, y)$, let α_{Q} be the so-called CM point in the upper half-plane, for which $Q\left(\alpha_{Q}, 1\right)=0$. Then

$$
\begin{equation*}
P(n)=\frac{\operatorname{Tr}(n)}{24 n-1}, \tag{29}
\end{equation*}
$$

where the trace is defined as

$$
\begin{equation*}
\operatorname{Tr}(n)=\sum_{Q \in Q_{n}} R\left(\alpha_{Q}\right) . \tag{30}
\end{equation*}
$$

Weisstein, Eric W. "Partition Function P."
From MathWorld-A Wolfram Web Resource.
http://mathworld.wolfram.com/PartitionFunctionP.html

Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT!!!!1!!!11!!

The number of partitions of n using only odd parts, o_{n}
$=\begin{gathered}\text { The number of partitions of } n \\ \text { using distinct parts, } d_{n}\end{gathered}$

Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT!!!!1!!!11!!

The number of partitions of n using only odd parts, o_{n} $=\begin{gathered}\text { The number of partitions of } n \\ \text { using distinct parts, } d_{n}\end{gathered}$
Investigation: Does this make sense? For $n=6$, o_{6} :
d_{6} :

Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT!!!!1!!!11!!

The number of partitions of n using only odd parts, o_{n} $=\begin{gathered}\text { The number of partitions of } n \\ \text { using distinct parts, } d_{n}\end{gathered}$
Investigation: Does this make sense? For $n=6$, o_{6} : d_{6} :

Solution. Determine the generating functions

$$
O(x)=\sum_{n \geq 0} o_{n} x^{n} \quad D(x)=\sum_{n \geq 0} d_{n} x^{n}
$$

Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT!!!!1!!!11!!

The number of partitions of n using only odd parts, o_{n}

$=$| The number of partitions of n |
| :---: |
| using distinct parts, d_{n} |

Investigation: Does this make sense? For $n=6$,
O_{6} :
d_{6} :

Solution. Determine the generating functions

$$
O(x)=\sum_{n \geq 0} o_{n} x^{n} \quad D(x)=\sum_{n \geq 0} d_{n} x^{n}
$$

See, I told you they were equal. \square

Standard Young Tableaux

Related to some current lines of research in algebra and combinatorics:

A Young diagram is a representation of a partition using left-justified boxes.

Standard Young Tableaux

Related to some current lines of research in algebra and combinatorics:

A Young diagram is a representation of a partition using left-justified boxes.

A standard Young tableau is a placement of the integers 1 through n into the boxes, where the numbers in both the rows and the columns are increasing.

Standard Young Tableaux

Related to some current lines of research in algebra and combinatorics:

A Young diagram is a representation of a partition using left-justified boxes.

A standard Young tableau is a placement of the integers 1 through n into the boxes, where the numbers in both the rows and the columns are increasing.

The hook length $h(i, j)$ of a cell (i, j) is the number of cells in the "hook" to the right and down.

Standard Young Tableaux

Related to some current lines of research in algebra and combinatorics:

A Young diagram is a representation of a partition using left-justified boxes.

A standard Young tableau is a placement of the integers 1 through n into the boxes, where the numbers in both the rows and the columns are increasing.

The hook length $h(i, j)$ of a cell (i, j) is the number of cells in the "hook" to the right and down.

Question: How many SYT are there of shape $\lambda \vdash n$?
Answer:

$$
\frac{n!}{\prod_{(i, j) \in \lambda} h(i, j)}
$$

A recurrence relation for $P(n, k)$ (p.78)

We use $P(n, *)$ to restrict partitions. Recall $P(n, k)=$ exactly k parts.

A recurrence relation for $P(n, k)$ (p.78)

We use $P(n, *)$ to restrict partitions. Recall $P(n, k)=$ exactly k parts.
Example. Prove this recurrence relation for $P(n, k)$:

$$
P(n, k)=P(n-1, k-1)+P(n-k, k)
$$

A recurrence relation for $P(n, k)$ (p.78)

We use $P(n, *)$ to restrict partitions. Recall $P(n, k)=$ exactly k parts.
Example. Prove this recurrence relation for $P(n, k)$:

$$
P(n, k)=P(n-1, k-1)+P(n-k, k)
$$

Question: How many partitions of n are there into exactly k parts? LHS:

RHS:

A recurrence relation for $P(n, k)$

 (p.78)We use $P(n, *)$ to restrict partitions. Recall $P(n, k)=$ exactly k parts.
Example. Prove this recurrence relation for $P(n, k)$:

$$
P(n, k)=P(n-1, k-1)+P(n-k, k)
$$

Question: How many partitions of n are there into exactly k parts? LHS: $P(n, k)$

RHS:

A recurrence relation for $P(n, k)$

We use $P(n, *)$ to restrict partitions. Recall $P(n, k)=$ exactly k parts.
Example. Prove this recurrence relation for $P(n, k)$:

$$
P(n, k)=P(n-1, k-1)+P(n-k, k)
$$

Question: How many partitions of n are there into exactly k parts? LHS: $P(n, k)$
RHS: Condition on whether the smallest part is of size 1 .

A recurrence relation for $P(n, k)$

We use $P(n, *)$ to restrict partitions. Recall $P(n, k)=$ exactly k parts.
Example. Prove this recurrence relation for $P(n, k)$:

$$
P(n, k)=P(n-1, k-1)+P(n-k, k)
$$

Question: How many partitions of n are there into exactly k parts? LHS: $P(n, k)$
RHS: Condition on whether the smallest part is of size 1 .

- If so, biject as follows to find many partitions:
$f:\left\{\begin{array}{c}\text { partitions of } n \text { into } k \text { parts } \\ \text { with smallest part } 1 .\end{array}\right\} \rightarrow\{$

A recurrence relation for $P(n, k)$

We use $P(n, *)$ to restrict partitions. Recall $P(n, k)=$ exactly k parts.
Example. Prove this recurrence relation for $P(n, k)$:

$$
P(n, k)=P(n-1, k-1)+P(n-k, k)
$$

Question: How many partitions of n are there into exactly k parts? LHS: $P(n, k)$
RHS: Condition on whether the smallest part is of size 1.

- If so, biject as follows to find many partitions:
$f:\left\{\begin{array}{c}\text { partitions of } n \text { into } k \text { parts } \\ \text { with smallest part } 1 .\end{array}\right\} \rightarrow\{$
- If not: biject as follows to find many partitions: $g:\left\{\begin{array}{c}\text { partitions of } n \text { into } k \text { parts } \\ \text { with smallest part } \neq 1 .\end{array}\right\} \rightarrow\{$

Using conjugation

Theorem 4.4.1. $P(n, k)$ equals $P(n$, largest part $=k)$

Using conjugation

Theorem 4.4.1. $P(n, k)$ equals $P(n$, largest part $=k)$
Proof. The conjugation function $f: \lambda \rightarrow \lambda^{c}$ is a bijection
$f:\left\{\begin{array}{c}\text { partitions of } n \\ \text { into exactly } k \text { parts }\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { partitions of } n \text { with } \\ \text { largest part of size } k .\end{array}\right\}$.

Using conjugation

Theorem 4.4.1. $P(n, k)$ equals $P(n$, largest part $=k)$
Proof. The conjugation function $f: \lambda \rightarrow \lambda^{c}$ is a bijection
$f:\left\{\begin{array}{c}\text { partitions of } n \\ \text { into exactly } k \text { parts }\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { partitions of } n \text { with } \\ \text { largest part of size } k .\end{array}\right\}$.

The same bijection gives:
Theorem 4.4.2. \qquad equals $P(n$, largest part $\leq k)$.

Characterization of self-conjugate partitions

Theorem 4.4.3. $P(n$, self conjugate $)=P(n$, distinct odd parts $)$

Characterization of self-conjugate partitions

Theorem 4.4.3. $P(n$, self conjugate $)=P(n$, distinct odd parts $)$
Proof. Define a bijection which "unfolds" self-conjugate partitions:
$f:\left\{\begin{array}{c}\text { self-conjugate } \\ \text { partitions } \lambda \text { of } n\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { partitions } \mu \text { of } n \text { into } \\ \text { distinct odd parts }\end{array}\right\}$.

- Define parts of μ by unpeeling λ layer by layer.
- Iteratively remove the first row and first column of λ.

Characterization of self-conjugate partitions

Theorem 4.4.3. $P(n$, self conjugate $)=P(n$, distinct odd parts $)$
Proof. Define a bijection which "unfolds" self-conjugate partitions:
$f:\left\{\begin{array}{c}\text { self-conjugate } \\ \text { partitions } \lambda \text { of } n\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { partitions } \mu \text { of } n \text { into } \\ \text { distinct odd parts }\end{array}\right\}$.

- Define parts of μ by unpeeling λ layer by layer.
- Iteratively remove the first row and first column of λ.

Question: Is f well defined?

Characterization of self-conjugate partitions

Theorem 4.4.3. $P(n$, self conjugate $)=P(n$, distinct odd parts $)$
Proof. Define a bijection which "unfolds" self-conjugate partitions:
$f:\left\{\begin{array}{c}\text { self-conjugate } \\ \text { partitions } \lambda \text { of } n\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { partitions } \mu \text { of } n \text { into } \\ \text { distinct odd parts }\end{array}\right\}$.

- Define parts of μ by unpeeling λ layer by layer.
- Iteratively remove the first row and first column of λ.

Question: Is f well defined?
Define the inverse function $g=f^{-1}: \mu \mapsto \lambda$:

- Find the center dot of each part μ_{i}.
- Fold each μ_{i} about its center dot.
- Nest these folded parts to create λ.

Characterization of self-conjugate partitions

Theorem 4.4.3. $P(n$, self conjugate $)=P(n$, distinct odd parts $)$
Proof. Define a bijection which "unfolds" self-conjugate partitions:
$f:\left\{\begin{array}{c}\text { self-conjugate } \\ \text { partitions } \lambda \text { of } n\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { partitions } \mu \text { of } n \text { into } \\ \text { distinct odd parts }\end{array}\right\}$.

- Define parts of μ by unpeeling λ layer by layer.
- Iteratively remove the first row and first column of λ.

Question: Is f well defined?
Define the inverse function $g=f^{-1}: \mu \mapsto \lambda$:

- Find the center dot of each part μ_{i}.
- Fold each μ_{i} about its center dot.
- Nest these folded parts to create λ.

Question: Is g well defined?

Characterization of self-conjugate partitions

Theorem 4.4.3. $P(n$, self conjugate $)=P(n$, distinct odd parts $)$
Proof. Define a bijection which "unfolds" self-conjugate partitions:
$f:\left\{\begin{array}{c}\text { self-conjugate } \\ \text { partitions } \lambda \text { of } n\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { partitions } \mu \text { of } n \text { into } \\ \text { distinct odd parts }\end{array}\right\}$.

- Define parts of μ by unpeeling λ layer by layer.
- Iteratively remove the first row and first column of λ.

Question: Is f well defined?
Define the inverse function $g=f^{-1}: \mu \mapsto \lambda$:

- Find the center dot of each part μ_{i}.
- Fold each μ_{i} about its center dot.
- Nest these folded parts to create λ.

Question: Is g well defined?
Question: Is $g(f(\lambda))=\lambda$?

