Principle of Inclusion-Exclusion

Example. Suppose that in a class of 30 students, 14 play soccer and 11 play basketball. How many students play a sport?

Solution.

Principle of Inclusion-Exclusion

Example. Suppose that in a class of 30 students, 14 play soccer and 11 play basketball. How many students play a sport? Solution.

Let S be the set of students who play soccer and B be the set of students who play basketball.

Then, $|S \cup B|=|S|+|B|$

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.
When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ and the A_{i} are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.
When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ and the A_{i} are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

$$
\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right| \quad-\left|A_{1} \cap A_{2}\right|
$$

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ and the A_{i} are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

$$
\begin{aligned}
\left|A_{1} \cup A_{2}\right|= & \left|A_{1}\right|+\left|A_{2}\right| \quad-\left|A_{1} \cap A_{2}\right| \\
\left|A_{1} \cup A_{2} \cup A_{3}\right|= & \left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right| \\
& -\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right|
\end{aligned}
$$

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.
When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ and the A_{i} are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

$$
\begin{aligned}
\left|A_{1} \cup A_{2}\right|= & \left|A_{1}\right|+\left|A_{2}\right| \quad-\left|A_{1} \cap A_{2}\right| \\
\left|A_{1} \cup A_{2} \cup A_{3}\right|= & \left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right| \\
& -\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right| \\
\left|A_{1} \cup \cdots \cup A_{m}\right|= & \sum\left|A_{i}\right|-\sum\left|A_{i} \cap A_{j}\right|+\sum\left|A_{i} \cap A_{j} \cap A_{k}\right| \cdots
\end{aligned}
$$

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.
When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ and the A_{i} are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

$$
\begin{aligned}
\left|A_{1} \cup A_{2}\right|= & \left|A_{1}\right|+\left|A_{2}\right| \quad-\left|A_{1} \cap A_{2}\right| \\
\left|A_{1} \cup A_{2} \cup A_{3}\right|= & \left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right| \\
& -\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right| \\
\left|A_{1} \cup \cdots \cup A_{m}\right|= & \sum\left|A_{i}\right|-\sum\left|A_{i} \cap A_{j}\right|+\sum\left|A_{i} \cap A_{j} \cap A_{k}\right| \cdots
\end{aligned}
$$

It may be more convenient to apply inclusion/exclusion where the A_{i} are forbidden subsets of \mathcal{U}, in which case

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.
When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ and the A_{i} are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

$$
\begin{aligned}
\left|A_{1} \cup A_{2}\right|= & \left|A_{1}\right|+\left|A_{2}\right| \quad-\left|A_{1} \cap A_{2}\right| \\
\left|A_{1} \cup A_{2} \cup A_{3}\right|= & \left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right| \\
& -\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right| \\
\left|A_{1} \cup \cdots \cup A_{m}\right|= & \sum\left|A_{i}\right|-\sum\left|A_{i} \cap A_{j}\right|+\sum\left|A_{i} \cap A_{j} \cap A_{k}\right| \cdots
\end{aligned}
$$

It may be more convenient to apply inclusion/exclusion where the A_{i} are forbidden subsets of \mathcal{U}, in which case \qquad
The Hard Part: Determining the right choice of A_{i}. The A_{i} and their intersections should be easy to count and easy to characterize.

mmm. . .PIE

Example. How many integers from 1 to 100 are divisible by 2,3 , or 5 ?

mmm. . .PIE

Example. How many integers from 1 to 100 are divisible by 2,3 , or 5 ?
Solution. Let $\mathcal{U}=\{n \in \mathbb{Z}$ such that $1 \leq n \leq 100\}$.
Let $A_{2} \subset \mathcal{U}$ be the multiples of 2 .
Let $A_{3} \subset \mathcal{U}$ be the multiples of 3 .
Let $A_{5} \subset \mathcal{U}$ be the multiples of 5 .
We want $\left|A_{2} \cup A_{3} \cup A_{5}\right|$.

mmm. . .PIE

Example. How many integers from 1 to 100 are divisible by 2,3 , or 5 ?
Solution. Let $\mathcal{U}=\{n \in \mathbb{Z}$ such that $1 \leq n \leq 100\}$.
Let $A_{2} \subset \mathcal{U}$ be the multiples of 2 .
Let $A_{3} \subset \mathcal{U}$ be the multiples of 3 .
Let $A_{5} \subset \mathcal{U}$ be the multiples of 5 .
We want $\left|A_{2} \cup A_{3} \cup A_{5}\right|$.
Write the interpretation of the intersections in words:
$A_{2} \cap A_{3}$ is the set of integers

mmm. . .PIE

Example. How many integers from 1 to 100 are divisible by 2,3 , or 5 ?
Solution. Let $\mathcal{U}=\{n \in \mathbb{Z}$ such that $1 \leq n \leq 100\}$.
Let $A_{2} \subset \mathcal{U}$ be the multiples of 2 .
Let $A_{3} \subset \mathcal{U}$ be the multiples of 3 .
Let $A_{5} \subset \mathcal{U}$ be the multiples of 5 .
We want $\left|A_{2} \cup A_{3} \cup A_{5}\right|$.
Write the interpretation of the intersections in words:
$A_{2} \cap A_{3}$ is the set of integers
$A_{2} \cap A_{5}$ is the set of integers
$A_{3} \cap A_{5}$ is the set of integers
$A_{2} \cap A_{3} \cap A_{5}$ is the set of integers that are

mmm. . .PIE

Example. How many integers from 1 to 100 are divisible by 2,3 , or 5 ?
Solution. Let $\mathcal{U}=\{n \in \mathbb{Z}$ such that $1 \leq n \leq 100\}$.
Let $A_{2} \subset \mathcal{U}$ be the multiples of 2 .
Let $A_{3} \subset \mathcal{U}$ be the multiples of 3 .
Let $A_{5} \subset \mathcal{U}$ be the multiples of 5 .
We want $\left|A_{2} \cup A_{3} \cup A_{5}\right|$.
Write the interpretation of the intersections in words:
$A_{2} \cap A_{3}$ is the set of integers
$A_{2} \cap A_{5}$ is the set of integers
$A_{3} \cap A_{5}$ is the set of integers
$A_{2} \cap A_{3} \cap A_{5}$ is the set of integers that are

$$
\begin{array}{rrrr}
\text { Now calculate: }\left|A_{2}\right|= & \left|A_{3}\right|= & \left|A_{5}\right|= \\
\left|A_{2} \cap A_{3}\right|= & & \left|A_{2} \cap A_{5}\right|= & \\
\left|A_{2} \cap A_{3} \cap A_{5}\right|= & & &
\end{array}
$$

Combinations with Repetitions

Quick review

1. How many ways are there to choose k elements out of the set $\left\{1 \cdot a_{1}, 1 \cdot a_{2}, \cdots, 1 \cdot a_{n}\right\}$?

Combinations with Repetitions

Quick review

1. How many ways are there to choose k elements out of the set $\left\{1 \cdot a_{1}, 1 \cdot a_{2}, \cdots, 1 \cdot a_{n}\right\}$?
2. How many ways are there to choose k elements out of the set $\left\{k \cdot a_{1}, k \cdot a_{2}, \cdots, k \cdot a_{n}\right\} ?\left(\right.$ really $\left.\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \cdots, \infty \cdot a_{n}\right\}\right)$

Combinations with Repetitions

Quick review

1. How many ways are there to choose k elements out of the set $\left\{1 \cdot a_{1}, 1 \cdot a_{2}, \cdots, 1 \cdot a_{n}\right\}$?
2. How many ways are there to choose k elements out of the set $\left\{k \cdot a_{1}, k \cdot a_{2}, \cdots, k \cdot a_{n}\right\} ?\left(\right.$ really $\left.\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \cdots, \infty \cdot a_{n}\right\}\right)$

What we would like to calculate is:
In how many ways can we choose k elements out of an arbitrary multiset?

Now, it's as easy as PIE.

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S

Define A_{1} to be 10 -combs that include at least __ a's.

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S

Define A_{1} to be 10 -combs that include at least __ a's.
Define A_{2} to be 10 -combs that include at least __ b 's. Define A_{3} to be 10 -combs that include at least __ c 's.

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S

Define A_{1} to be 10 -combs that include at least __ a's.
Define A_{2} to be 10 -combs that include at least __ b 's. Define A_{3} to be 10 -combs that include at least __ c 's.

In words, $A_{1} \cap A_{2}$ are those 10 -combs that
$A_{1} \cap A_{3}:$
$A_{2} \cap A_{3}:$
$A_{1} \cap A_{2} \cap A_{3}$

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S

Define A_{1} to be 10 -combs that include at least __ a's.
Define A_{2} to be 10 -combs that include at least __ b 's. Define A_{3} to be 10 -combs that include at least __ c 's.

In words, $A_{1} \cap A_{2}$ are those 10 -combs that
$A_{1} \cap A_{3}:$
$A_{2} \cap A_{3}:$
$A_{1} \cap A_{2} \cap A_{3}$
Now calculate: $|\mathcal{U}|=\left|A_{1}\right|=$

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S

Define A_{1} to be 10 -combs that include at least __ a's.
Define A_{2} to be 10 -combs that include at least __ b 's. Define A_{3} to be 10 -combs that include at least __ c 's.

In words, $A_{1} \cap A_{2}$ are those 10 -combs that
$A_{1} \cap A_{3}: \quad A_{2} \cap A_{3}:$
$A_{1} \cap A_{2} \cap A_{3}$
Now calculate: $|\mathcal{U}|=\left|A_{1}\right|=\quad\left|A_{2}\right|=\left(\binom{3}{5}\right) \quad\left|A_{3}\right|=\left(\binom{3}{4}\right)$
$\left|A_{1} \cap A_{2}\right|=3 \quad\left|A_{1} \cap A_{3}\right|=1 \quad\left|A_{2} \cap A_{3}\right|=0 \quad\left|A_{1} \cap A_{2} \cap A_{3}\right|=0$
And finally: So $|\mathcal{U}|-\left|A_{1} \cup A_{2} \cup A_{3}\right|=$

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.
Definition: An n-derangement is an n-permutation $\pi=p_{1} p_{2} \cdots p_{n}$ such that $p_{1} \neq 1, p_{2} \neq 2, \cdots, p_{n} \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i)=i$.

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.
Definition: An n-derangement is an n-permutation $\pi=p_{1} p_{2} \cdots p_{n}$ such that $p_{1} \neq 1, p_{2} \neq 2, \cdots, p_{n} \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i)=i$.
Notation: We let D_{n} be the number of all n-derangements.
When you see D_{n}, think combinatorially: "The number of ways to return n hats to n people so no one gets his/her own hat back"

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.
Definition: An n-derangement is an n-permutation $\pi=p_{1} p_{2} \cdots p_{n}$ such that $p_{1} \neq 1, p_{2} \neq 2, \cdots, p_{n} \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i)=i$.
Notation: We let D_{n} be the number of all n-derangements.
When you see D_{n}, think combinatorially: "The number of ways to return n hats to n people so no one gets his/her own hat back"

Question: Compute a formula for D_{n}.

Calculating the number of derangements

Solution. Let \mathcal{U} be the set of all n-permutations.
We will remove all bad permutations using Inclusion / Exclusion.

Calculating the number of derangements

Solution. Let \mathcal{U} be the set of all n-permutations.
We will remove all bad permutations using Inclusion / Exclusion.
Define A_{i} (for all $i \in[n]$) to be the set of n-perms where $p_{i}=i$.
In words, $A_{i} \cap A_{j}$ are n-perms where

Calculating the number of derangements

Solution. Let \mathcal{U} be the set of all n-permutations.
We will remove all bad permutations using Inclusion / Exclusion.
Define A_{i} (for all $i \in[n]$) to be the set of n-perms where $p_{i}=i$.
In words, $A_{i} \cap A_{j}$ are n-perms where
$A_{i} \cap A_{j} \cap A_{k}$ are n-perms where

Calculating the number of derangements

Solution. Let \mathcal{U} be the set of all n-permutations.
We will remove all bad permutations using Inclusion / Exclusion.
Define A_{i} (for all $i \in[n]$) to be the set of n-perms where $p_{i}=i$.
In words, $A_{i} \cap A_{j}$ are n-perms where
$A_{i} \cap A_{j} \cap A_{k}$ are n-perms where
In general, $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ are n-perms with $p_{i_{1}}=i_{1}, \cdots, p_{i_{k}}=i_{k}$.
Now calculate: $|\mathcal{U}|=$

Calculating the number of derangements

Solution. Let \mathcal{U} be the set of all n-permutations.
We will remove all bad permutations using Inclusion / Exclusion.
Define A_{i} (for all $i \in[n]$) to be the set of n-perms where $p_{i}=i$.
In words, $A_{i} \cap A_{j}$ are n-perms where
$A_{i} \cap A_{j} \cap A_{k}$ are n-perms where
In general, $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ are n-perms with $p_{i_{1}}=i_{1}, \cdots, p_{i_{k}}=i_{k}$.
Now calculate: $|\mathcal{U}|=$

$$
\left|A_{1}\right|=\quad\left|A_{2}\right|=
$$

Calculating the number of derangements

Solution. Let \mathcal{U} be the set of all n-permutations.
We will remove all bad permutations using Inclusion / Exclusion.
Define A_{i} (for all $i \in[n]$) to be the set of n-perms where $p_{i}=i$.
In words, $A_{i} \cap A_{j}$ are n-perms where
$A_{i} \cap A_{j} \cap A_{k}$ are n-perms where
In general, $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ are n-perms with $p_{i_{1}}=i_{1}, \cdots, p_{i_{k}}=i_{k}$.
Now calculate: $|\mathcal{U}|=$

$$
\left|A_{1}\right|=
$$

$$
\left|A_{2}\right|=
$$

For all i and $j,\left|A_{i} \cap A_{j}\right|=$

Calculating the number of derangements

Solution. Let \mathcal{U} be the set of all n-permutations.
We will remove all bad permutations using Inclusion / Exclusion.
Define A_{i} (for all $i \in[n]$) to be the set of n-perms where $p_{i}=i$.
In words, $A_{i} \cap A_{j}$ are n-perms where
$A_{i} \cap A_{j} \cap A_{k}$ are n-perms where
In general, $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ are n-perms with $p_{i_{1}}=i_{1}, \cdots, p_{i_{k}}=i_{k}$.
Now calculate: $|\mathcal{U}|=$

$$
\left|A_{1}\right|=\quad\left|A_{2}\right|=
$$

For all i and $j,\left|A_{i} \cap A_{j}\right|=$
When intersecting k sets, $\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=$

Calculating the number of derangements

Solution. Let \mathcal{U} be the set of all n-permutations.
We will remove all bad permutations using Inclusion / Exclusion.
Define A_{i} (for all $i \in[n]$) to be the set of n-perms where $p_{i}=i$.
In words, $A_{i} \cap A_{j}$ are n-perms where
$A_{i} \cap A_{j} \cap A_{k}$ are n-perms where
In general, $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ are n-perms with $p_{i_{1}}=i_{1}, \cdots, p_{i_{k}}=i_{k}$.
Now calculate: $|\mathcal{U}|=$

$$
\left|A_{1}\right|=\quad\left|A_{2}\right|=
$$

For all i and $j,\left|A_{i} \cap A_{j}\right|=$
When intersecting k sets, $\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=$
How many ways are there to intersect k sets?

Calculating the number of derangements

Solution. Let \mathcal{U} be the set of all n-permutations.
We will remove all bad permutations using Inclusion / Exclusion.
Define A_{i} (for all $i \in[n]$) to be the set of n-perms where $p_{i}=i$.
In words, $A_{i} \cap A_{j}$ are n-perms where
$A_{i} \cap A_{j} \cap A_{k}$ are n-perms where
In general, $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ are n-perms with $p_{i_{1}}=i_{1}, \cdots, p_{i_{k}}=i_{k}$.
Now calculate: $|\mathcal{U}|=$

$$
\left|A_{1}\right|=\quad\left|A_{2}\right|=
$$

For all i and $j,\left|A_{i} \cap A_{j}\right|=$
When intersecting k sets, $\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=$
How many ways are there to intersect k sets?
We conclude:
$D_{n}=|\mathcal{U}|-\sum\left|A_{i}\right|+\sum\left|A_{i} \cap A_{j}\right|-\sum\left|A_{i} \cap A_{j} \cap A_{k}\right|+\cdots$

