Example. Suppose that in a class of 30 students, 14 play soccer and 11 play basketball. How many students play a sport?

Solution.

Example. Suppose that in a class of 30 students, 14 play soccer and 11 play basketball. How many students play a sport? *Solution.*

Let *S* be the set of students who play soccer and *B* be the set of students who play basketball. Then, $|S \cup B| = |S| + |B|$ _____.

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset U$ and the A_i are **not** pairwise disjoint, we must apply the principle of inclusion-exclusion to determine |A|:

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset U$ and the A_i are **not** pairwise disjoint, we must apply the principle of inclusion-exclusion to determine |A|:

 $|A_1 \cup A_2| = |A_1| + |A_2| \qquad -|A_1 \cap A_2|$

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset U$ and the A_i are **not** pairwise disjoint, we must apply the principle of inclusion-exclusion to determine |A|:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$
$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3|$$
$$- |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset U$ and the A_i are **not** pairwise disjoint, we must apply the principle of inclusion-exclusion to determine |A|:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3|$$

$$- |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

 $|A_1 \cup \cdots \cup A_m| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots$

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset U$ and the A_i are **not** pairwise disjoint, we must apply the principle of inclusion-exclusion to determine |A|:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3|$$

$$- |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

 $|A_1 \cup \cdots \cup A_m| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots$

It may be more convenient to apply inclusion/exclusion where the A_i are *forbidden* subsets of U, in which case ______

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} is for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset U$ and the A_i are **not** pairwise disjoint, we must apply the principle of inclusion-exclusion to determine |A|:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

$$A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3|$$

$$- |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

 $|A_1 \cup \cdots \cup A_m| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots$

It may be more convenient to apply inclusion/exclusion where the A_i are *forbidden* subsets of U, in which case ______

The Hard Part: Determining the right choice of A_i . The A_i and their intersections should be easy to count and easy to characterize.

Example. How many integers from 1 to 100 are divisible by 2, 3, or 5?

Example. How many integers from 1 to 100 are divisible by 2, 3, or 5?

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 100\}.$

Let $A_2 \subset \mathcal{U}$ be the multiples of 2. Let $A_3 \subset \mathcal{U}$ be the multiples of 3. Let $A_5 \subset \mathcal{U}$ be the multiples of 5. We want $|A_2 \cup A_3 \cup A_5|$.

Example. How many integers from 1 to 100 are divisible by 2, 3, or 5?

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 100\}.$

Let $A_2 \subset \mathcal{U}$ be the multiples of 2. Let $A_3 \subset \mathcal{U}$ be the multiples of 3. Let $A_5 \subset \mathcal{U}$ be the multiples of 5.

We want $|A_2 \cup A_3 \cup A_5|$.

Write the interpretation of the intersections in words: $A_2 \cap A_3$ is the set of integers

Example. How many integers from 1 to 100 are divisible by 2, 3, or 5?

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 100\}.$

Let $A_2 \subset \mathcal{U}$ be the multiples of 2. Let $A_3 \subset \mathcal{U}$ be the multiples of 3. Let $A_5 \subset \mathcal{U}$ be the multiples of 5.

We want $|A_2 \cup A_3 \cup A_5|$.

Write the interpretation of the intersections in words: $A_2 \cap A_3$ is the set of integers $A_2 \cap A_5$ is the set of integers $A_3 \cap A_5$ is the set of integers $A_2 \cap A_3 \cap A_5$ is the set of integers that are

Example. How many integers from 1 to 100 are divisible by 2, 3, or 5?

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 100\}.$

Let $A_2 \subset \mathcal{U}$ be the multiples of 2. Let $A_3 \subset \mathcal{U}$ be the multiples of 3. Let $A_5 \subset \mathcal{U}$ be the multiples of 5.

We want $|A_2 \cup A_3 \cup A_5|$.

Write the interpretation of the intersections in words:

 $A_2 \cap A_3$ is the set of integers $A_2 \cap A_5$ is the set of integers $A_3 \cap A_5$ is the set of integers $A_2 \cap A_3 \cap A_5$ is the set of integers that are

Now calculate:
$$|A_2| = |A_3| = |A_5| =$$

 $|A_2 \cap A_3| = |A_2 \cap A_5| = |A_3 \cap A_5| =$
 $|A_2 \cap A_3 \cap A_5| =$

Quick review

1. How many ways are there to choose k elements out of the set $\{1 \cdot a_1, 1 \cdot a_2, \cdots, 1 \cdot a_n\}$?

Quick review

- 1. How many ways are there to choose k elements out of the set $\{1 \cdot a_1, 1 \cdot a_2, \cdots, 1 \cdot a_n\}$?
- 2. How many ways are there to choose k elements out of the set $\{k \cdot a_1, k \cdot a_2, \cdots, k \cdot a_n\}$? (really $\{\infty \cdot a_1, \infty \cdot a_2, \cdots, \infty \cdot a_n\}$)

Quick review

- 1. How many ways are there to choose k elements out of the set $\{1 \cdot a_1, 1 \cdot a_2, \cdots, 1 \cdot a_n\}$?
- 2. How many ways are there to choose k elements out of the set $\{k \cdot a_1, k \cdot a_2, \cdots, k \cdot a_n\}$? (really $\{\infty \cdot a_1, \infty \cdot a_2, \cdots, \infty \cdot a_n\}$)

What we would like to calculate is:

In how many ways can we choose k elements out of an arbitrary multiset?

Now, it's as easy as PIE.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S

Define A_1 to be 10-combs that include at least _____ a's.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S

Define A_1 to be 10-combs that include at least _____ a's. Define A_2 to be 10-combs that include at least _____ b's. Define A_3 to be 10-combs that include at least _____ c's.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S

Define A_1 to be 10-combs that include at least _____ a's. Define A_2 to be 10-combs that include at least _____ b's. Define A_3 to be 10-combs that include at least _____ c's.

In words, $A_1 \cap A_2$ are those 10-combs that $A_1 \cap A_3$: $A_1 \cap A_2 \cap A_3$: $A_1 \cap A_2 \cap A_3$

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S

Define A_1 to be 10-combs that include at least _____ a's. Define A_2 to be 10-combs that include at least _____ b's. Define A_3 to be 10-combs that include at least _____ c's.

In words, $A_1 \cap A_2$ are those 10-combs that $A_1 \cap A_3$: $A_1 \cap A_2 \cap A_3$: $A_1 \cap A_2 \cap A_3$

<u>Now calculate</u>: $|\mathcal{U}| = |A_1| =$

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S

Define A_1 to be 10-combs that include at least _____ a's. Define A_2 to be 10-combs that include at least _____ b's. Define A_3 to be 10-combs that include at least _____ c's.

In words,
$$A_1 \cap A_2$$
 are those 10-combs that
 $A_1 \cap A_3$: $A_2 \cap A_3$:
 $A_1 \cap A_2 \cap A_3$

 $\begin{array}{ll} \underline{\text{Now calculate}} & |\mathcal{U}| = & |A_1| = & |A_2| = \binom{3}{5} & |A_3| = \binom{3}{4} \\ |A_1 \cap A_2| = 3 & |A_1 \cap A_3| = 1 & |A_2 \cap A_3| = 0 & |A_1 \cap A_2 \cap A_3| = 0 \\ \underline{\text{And finally}} & \text{So } |\mathcal{U}| - |A_1 \cup A_2 \cup A_3| = \end{array}$

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.

Definition: An *n*-derangement is an *n*-permutation $\pi = p_1 p_2 \cdots p_n$ such that $p_1 \neq 1$, $p_2 \neq 2$, \cdots , $p_n \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i) = i$.

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.

Definition: An *n*-derangement is an *n*-permutation $\pi = p_1 p_2 \cdots p_n$ such that $p_1 \neq 1$, $p_2 \neq 2$, \cdots , $p_n \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i) = i$. Notation: We let D_n be the number of all *n*-derangements.

When you see D_n , think combinatorially: "The number of ways to return n hats to n people so no one gets his/her own hat back"

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.

Definition: An *n*-derangement is an *n*-permutation $\pi = p_1 p_2 \cdots p_n$ such that $p_1 \neq 1$, $p_2 \neq 2$, \cdots , $p_n \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i) = i$. Notation: We let D_n be the number of all *n*-derangements.

When you see D_n , think combinatorially: "The number of ways to return n hats to n people so no one gets his/her own hat back"

Question: Compute a formula for D_n .

Solution. Let \mathcal{U} be the set of all *n*-permutations. We will remove all bad permutations using Inclusion / Exclusion.

Solution. Let ${\cal U}$ be the set of all n-permutations. We will remove all bad permutations using Inclusion / Exclusion.

Define A_i (for all $i \in [n]$) to be the set of *n*-perms where $p_i = i$. In words, $A_i \cap A_i$ are *n*-perms where

Solution. Let \mathcal{U} be the set of all *n*-permutations. We will remove all bad permutations using Inclusion / Exclusion.

Define A_i (for all $i \in [n]$) to be the set of *n*-perms where $p_i = i$. In words, $A_i \cap A_j$ are *n*-perms where $A_i \cap A_i \cap A_k$ are *n*-perms where

Solution. Let \mathcal{U} be the set of all *n*-permutations. We will remove all bad permutations using Inclusion / Exclusion. **Define** A_i (for all $i \in [n]$) to be the set of *n*-perms where $p_i = i$. In words, $A_i \cap A_j$ are *n*-perms where $A_i \cap A_j \cap A_k$ are *n*-perms where In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$. Now calculate: $|\mathcal{U}| =$

Solution. Let \mathcal{U} be the set of all *n*-permutations. We will remove all bad permutations using Inclusion / Exclusion. **Define** A_i (for all $i \in [n]$) to be the set of *n*-perms where $p_i = i$. In words, $A_i \cap A_i$ are *n*-perms where

 $A_i \cap A_j \cap A_k$ are *n*-perms where

In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$. <u>Now calculate</u>: $|\mathcal{U}| = |A_1| = |A_2| =$

Solution. Let \mathcal{U} be the set of all *n*-permutations. We will remove all bad permutations using Inclusion / Exclusion. **Define** A_i (for all $i \in [n]$) to be the set of *n*-perms where $p_i = i$. In words, $A_i \cap A_j$ are *n*-perms where $A_i \cap A_j \cap A_k$ are *n*-perms where

In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$. <u>Now calculate</u>: $|\mathcal{U}| =$ $|A_1| =$ **For all** *i* and *j*, $|A_i \cap A_j| =$

Solution. Let ${\cal U}$ be the set of all n-permutations. We will remove all bad permutations using Inclusion / Exclusion.

Define A_i (for all $i \in [n]$) to be the set of *n*-perms where $p_i = i$. In words, $A_i \cap A_j$ are *n*-perms where

 $A_i \cap A_j \cap A_k$ are *n*-perms where

In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$. <u>Now calculate</u>: $|\mathcal{U}| =$ $|A_1| =$ **For all** *i* and *j*, $|A_i \cap A_j| =$ When intersecting *k* sets, $|A_{i_1} \cap \cdots \cap A_{i_k}| =$

Solution. Let \mathcal{U} be the set of all *n*-permutations. We will remove all bad permutations using Inclusion / Exclusion.

Define A_i (for all $i \in [n]$) to be the set of *n*-perms where $p_i = i$. In words, $A_i \cap A_j$ are *n*-perms where

 $A_i \cap A_j \cap A_k$ are *n*-perms where

In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$. <u>Now calculate</u>: $|\mathcal{U}| =$ $|A_1| =$ **For all** *i* and *j*, $|A_i \cap A_j| =$ When intersecting *k* sets, $|A_{i_1} \cap \cdots \cap A_{i_k}| =$ How many ways are there to intersect *k* sets?

Solution. Let ${\cal U}$ be the set of all n-permutations. We will remove all bad permutations using Inclusion / Exclusion.

Define A_i (for all $i \in [n]$) to be the set of *n*-perms where $p_i = i$. In words, $A_i \cap A_j$ are *n*-perms where

 $A_i \cap A_j \cap A_k$ are *n*-perms where

In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$. <u>Now calculate</u>: $|\mathcal{U}| =$ $|A_1| =$ **For all** *i* and *j*, $|A_i \cap A_j| =$ When intersecting *k* sets, $|A_{i_1} \cap \cdots \cap A_{i_k}| =$ How many ways are there to intersect *k* sets? <u>We conclude</u>: $D_n = |\mathcal{U}| - \sum_i |A_i| + \sum_i |A_i \cap A_i| - \sum_i |A_i \cap A_i \cap A_k| + \cdots$