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Multiplying two generating functions (Convolution)

Let A(x) =
∑
k≥0

akx
k and B(x) =

∑
k≥0

bkx
k .

Question: What is the coefficient of xk in A(x)B(x)?

When expanding the product A(x)B(x) we multiply terms aix
i in A

by terms bjx
j in B. This product contributes to the coefficient of

xk in A(x)B(x) only when .

Therefore, A(x)B(x) =
∑
k≥0

( )
xk

Example.

[x9] x
3(1+x)4

(1−2x)

Combinatorial interpretation of the convolution:
If ak counts all “A” objects of “size” k , and
bk counts all “B” objects of “size” k,

Then [xk ]
(
A(x)B(x)

)
counts all pairs of objects (A,B)

with total size k .
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A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies,
where for each of 20 BIG candy bars, we can choose at most one, and
for each of 40 different small candies, we can choose as many as we like?

Big candy g.f.: B(x)

= (1 + x)20 =
∞∑
k=0

(
20

k

)
xk .

bk counts
(k big candies)

Small candy g.f.: S(x)

=
1

(1− x)40
=

∞∑
k=0

((
40

k

))
xk .

sk counts
(k small candies)

Total g.f.: B(x)S(x)

=
∞∑
k=0

[
k∑

i=0

(
20

i

)((
40

k − i

))]
xk

Conclusion: [x ]B(x)S(x) =
∑
i=0

(
20

i

)((
40

− i

))
So, [xk ]B(x)S(x) counts pairs of the form ∨ w/k total candies.

(some number of big candies, some number of small candies)
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Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the
distribution of the sums that appear?

Solution. The generating function for one die is D(x) =

Therefore, the distribution of sums for rolling two dice is

Question: What does D(1) count?
Answer:

Example. Is it possible to relabel two six-sided dice differently to
give the exact same distribution of sums?

Solution. Find two generating functions F (x) and G (x) such that
F (x)G (x) = D2(x) and F (1) = G (1) = 6. Rearrange the factors:

D(x)2 = x2(1 + x)2
(
1− x + x2

)2(
1 + x + x2

)2
.

=
[
x(1 + x)

(
1 + x + x2

)]
·
[
x
(
1− x + x2

)2
(1 + x)

(
1 + x + x2

)]
=

[
x + 2x2 + 2x3 + x4

]
·
[
x + x3 + x4 + x5 + x6 + x8

]
Die F : {1, 2, 2, 3, 3, 4} and die G : {1, 3, 4, 5, 6, 8}
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Vandermonde’s Identity (p. 117)

(
m + n

k

)
=

k∑
j=0

(
m

j

)(
n

k − j

)
Combinatorial proof Generating function proof
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Powers of generating functions

A special case of convolution gives the coefficients of powers of a g.f.:(
A(x)

)2
=

∑
k≥0

( k∑
i=0

aiak−i

)
xk

=
∑
k≥0

( ∑
i1+i2=k

ai1ai2

)
xk .

Similarly,(
A(x)

)n
=

∑
k≥0

( ∑
i1+i2+···+in=k

ai1ai2 · · · ain
)
xk .

Conclusion:
[xk ](A(x))n counts sequences of objects (A1,A2, . . . ,An), all of type A,
with a total size (summed over all objects) of k.

Example. What is the generating function for the number of points
that a basketball team can score if they hit a sequence of 10 baskets?

In how many ways can they score 20 points in those 10 baskets?
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Compositions

Question: In how many ways can we write a positive integer n
as a sum of positive integers?

If order doesn’t matter:
A partition: n = p1+p2+· · ·+pℓ for positive integers p1, p2 . . . , pℓ

satisfying p1 ≥ p2 ≥ · · · ≥ pℓ.

If order does matter:
A composition: n = i1+i2+· · ·+iℓ for positive integers i1, i2 . . . , iℓ

with no restrictions.

Example. There are 2n−1 compositions of n. When n = 4:

4
{
4

3 + 1

{
3 + 1

1 + 3

2 + 2
{
2 + 2

2 + 1 + 1


2 + 1 + 1

1 + 2 + 1

1 + 1 + 2

1 + 1 + 1 + 1
{
1 + 1 + 1 + 1
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A composition: n = i1+i2+· · ·+iℓ for positive integers i1, i2 . . . , iℓ
with no restrictions.

Example. There are 2n−1 compositions of n. When n = 4:

4
3 + 1
2 + 2

2 + 1 + 1
1 + 1 + 1 + 1
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Compositions of Generating Functions

Question: Let F (x) =
∑

n≥0 fnx
n and G (x) =

∑
n≥0 gnx

n.

What can we learn about the composition H(x) = F
(
G (x)

)
?

Investigate F (x) = 1/(1− x).

H(x) = F (G (x)) =
1

1− G (x)
= .

▶ This is an infinite sum of (likely infinite) power series. Is this OK?

▶ The constant term h0 of H(x) only makes sense if g0 = 0.

▶ This implies that xn divides G (x)n.
Hence, there are at most n− 1 summands which contain xn−1.
We conclude that the infinite sum makes sense.

For a general composition with g0 = 0,

F (G (x)) =
∑
n≥0

fnG (x)n = f0 + f1G (x) + f2G (x)2 + f3G (x)3 + · · · .
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Compositions. of. Generating Functions.

Interpreting
1

1− G (x)
= 1 + G (x)1 + G (x)2 + G (x)3 + · · · :

Recall: The generating function G (x)n counts sequences of length n of
objects (G1,G2, . . . ,Gn), each of type G , and the coefficient [xk ]

(
G (x)n

)
counts those n-sequences that have total size equal to k .

Conclusion: As long as g0 = 0, then 1 + G (x)1 + G (x)2 + G (x)3 + · · ·
counts sequences of any length of objects of type G , and the
coefficient [xk ] 1

1−G(x) counts those that have total size equal to k.

Alternatively: Interpret [xk ] 1
1−G(x) thinking of k as this total size.

First, find all ways to break down k into integers i1 + · · ·+ iℓ = k.
Then create all sequences of objects of type G in which
object j has size ij .

Think: A composition of generating functions equals
a composition. of. generating. functions.
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An Example, Compositions

Example. How many compositions of k are there?

Solution. A composition of k corresponds to a sequence
(i1, . . . , iℓ) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f.
that counts how many positive integers there are with “size i”.

What does size correspond to?

How many have value i? Exactly one: the number i .

So the generating function for our objects is
G (x) = 0 + 1x1 + 1x2 + 1x3 + 1x4 + · · · = .

We conclude that the generating function for compositions is
H(x) = 1

1−G(x) =

So the number of compositions of n is
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A Composition Example

Example. How many ways are there to take a line of k soldiers,
divide the line into non-empty platoons, and from each platoon
choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of
platoons of size (i1, . . . , iℓ).

Given i soldiers in a platoon, in how many ways can we assign the
platoon a leader?

Therefore G (x) =

And the generating function for such a military breakdown is

H(x) =
1

1− G (x)
=

1− 2x + x2

1− 3x + x2
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Domino Tilings

Example. How many square-domino tilings are there of a 1× n board?

Solution. A tiling corresponds to a sequence (i1, . . . , iℓ),
where ij .

So G (x) = , and therefore H(x) = .

Another way to see this:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

G (x)0 =
G (x)1 =
G (x)2 =
G (x)3 =
G (x)4 =
G (x)5 =
G (x)6 =

1/(1− G (x)) =
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