Multiplying two generating functions (Convolution)

Let $A(x)=\sum_{k \geq 0} a_{k} x^{k}$ and $B(x)=\sum_{k \geq 0} b_{k} x^{k}$.
Question: What is the coefficient of x^{k} in $A(x) B(x)$?

Multiplying two generating functions (Convolution)

Let $A(x)=\sum_{k \geq 0} a_{k} x^{k}$ and $B(x)=\sum_{k \geq 0} b_{k} x^{k}$.
Question: What is the coefficient of x^{k} in $A(x) B(x)$?
When expanding the product $A(x) B(x)$ we multiply terms $a_{i} x^{i}$ in A by terms $b_{j} x^{j}$ in B. This product contributes to the coefficient of x^{k} in $A(x) B(x)$ only when

Multiplying two generating functions (Convolution)

Let $A(x)=\sum_{k \geq 0} a_{k} x^{k}$ and $B(x)=\sum_{k \geq 0} b_{k} x^{k}$.
Question: What is the coefficient of x^{k} in $A(x) B(x)$?
When expanding the product $A(x) B(x)$ we multiply terms $a_{i} x^{i}$ in A by terms $b_{j} x^{j}$ in B. This product contributes to the coefficient of x^{k} in $A(x) B(x)$ only when
Therefore, $A(x) B(x)=\sum_{k \geq 0}\left(\quad x^{k}\right.$
Example.
$\left[x^{9}\right] \frac{x^{3}(1+x)^{4}}{(1-2 x)}$

Multiplying two generating functions (Convolution)

Let $A(x)=\sum_{k \geq 0} a_{k} x^{k}$ and $B(x)=\sum_{k \geq 0} b_{k} x^{k}$.
Question: What is the coefficient of x^{k} in $A(x) B(x)$?
When expanding the product $A(x) B(x)$ we multiply terms $a_{i} x^{i}$ in A by terms $b_{j} x^{j}$ in B. This product contributes to the coefficient of x^{k} in $A(x) B(x)$ only when \qquad -.
Therefore, $A(x) B(x)=\sum_{k \geq 0}(\quad) x^{k} \quad \begin{gathered}\text { Example. } \\ {\left[x^{9}\right] \frac{x^{3}(1+x)^{4}}{(1-2 x)}}\end{gathered}$
Combinatorial interpretation of the convolution:
If a_{k} counts all " A " objects of "size" k, and b_{k} counts all " B " objects of "size" k,
Then $\left[x^{k}\right](A(x) B(x))$ counts all pairs of objects (A, B) with total size k.

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies, where for each of 20 BIG candy bars, we can choose at most one, and for each of 40 different small candies, we can choose as many as we like?

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies, where for each of 20 BIG candy bars, we can choose at most one, and for each of 40 different small candies, we can choose as many as we like?

Big candy g.f.: $B(x)$

Small candy g.f.: $S(x)$

Total g.f.: $B(x) S(x)$

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies, where for each of 20 BIG candy bars, we can choose at most one, and for each of 40 different small candies, we can choose as many as we like?
Big candy g.f.: $B(x)=(1+x)^{20}=\sum_{k=0}^{\infty}\binom{20}{k} x^{k} . \quad \begin{gathered}b_{k} \text { counts } \\ (k \text { big candies })\end{gathered}$
Small candy g.f.: $S(x)$

Total g.f.: $B(x) S(x)$

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies, where for each of 20 BIG candy bars, we can choose at most one, and for each of 40 different small candies, we can choose as many as we like?
Big candy g.f.: $B(x)=(1+x)^{20}=\sum_{k=0}^{\infty}\binom{20}{k} x^{k}$.
Small candy g.f.: $S(x)=\frac{1}{(1-x)^{40}}=\sum_{k=0}^{\infty}\left(\binom{40}{k}\right) x^{k}$.
b_{k} counts
(k big candies)
s_{k} counts
(k small candies)
Total g.f.: $B(x) S(x)$

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies, where for each of 20 BIG candy bars, we can choose at most one, and for each of 40 different small candies, we can choose as many as we like?
Big candy g.f.: $B(x)=(1+x)^{20}=\sum_{k=0}^{\infty}\binom{20}{k} x^{k}$.
Small candy g.f.: $S(x)=\frac{1}{(1-x)^{40}}=\sum_{k=0}^{\infty}\left(\binom{40}{k}\right) x^{k}$.
b_{k} counts
(k big candies)
s_{k} counts
(k small candies)
Total g.f.: $B(x) S(x)=\sum_{k=0}^{\infty}\left[\sum_{i=0}^{k}\binom{20}{i}\left(\binom{40}{k-i}\right)\right] x^{k}$

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies, where for each of 20 BIG candy bars, we can choose at most one, and for each of 40 different small candies, we can choose as many as we like?
Big candy g.f.: $B(x)=(1+x)^{20}=\sum_{k=0}^{\infty}\binom{20}{k} x^{k}$.
Small candy g.f.: $S(x)=\frac{1}{(1-x)^{40}}=\sum_{k=0}^{\infty}\left(\binom{40}{k}\right) x^{k}$.
b_{k} counts
(k big candies)
s_{k} counts
(k small candies)
Total g.f.: $B(x) S(x)=\sum_{k=0}^{\infty}\left[\sum_{i=0}^{k}\binom{20}{i}\left(\binom{40}{k-i}\right)\right] x^{k}$
Conclusion: $[x-] B(x) S(x)=\sum_{i=0}\binom{20}{i}\left(\binom{40}{-i}\right)$

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies, where for each of 20 BIG candy bars, we can choose at most one, and for each of 40 different small candies, we can choose as many as we like?
Big candy g.f.: $B(x)=(1+x)^{20}=\sum_{k=0}^{\infty}\binom{20}{k} x^{k}$.
Small candy g.f.: $S(x)=\frac{1}{(1-x)^{40}}=\sum_{k=0}^{\infty}\left(\binom{40}{k}\right) x^{k}$.
b_{k} counts
(k big candies)
s_{k} counts (k small candies)
Total g.f.: $B(x) S(x)=\sum_{k=0}^{\infty}\left[\sum_{i=0}^{k}\binom{20}{i}\left(\binom{40}{k-i}\right)\right] x^{k}$
Conclusion: $[x-] B(x) S(x)=\sum_{i=0}\binom{20}{i}\left(\binom{40}{-i}\right)$
So, $\left[x^{k}\right] B(x) S(x)$ counts pairs of the form $\quad V \quad w / k$ total candies. (some number of big candies, some number of small candies)

Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?
Solution. The generating function for one die is $D(x)=$

Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?
Solution. The generating function for one die is $D(x)=$ Therefore, the distribution of sums for rolling two dice is

Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?
Solution. The generating function for one die is $D(x)=$ Therefore, the distribution of sums for rolling two dice is
Question: What does $D(1)$ count?
Answer:

Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?
Solution. The generating function for one die is $D(x)=$ Therefore, the distribution of sums for rolling two dice is
Question: What does $D(1)$ count?
Answer:
Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?

Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?
Solution. The generating function for one die is $D(x)=$ Therefore, the distribution of sums for rolling two dice is
Question: What does $D(1)$ count?
Answer:
Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?
Solution. Find two generating functions $F(x)$ and $G(x)$ such that $F(x) G(x)=D^{2}(x)$ and $F(1)=G(1)=6$.

Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?
Solution. The generating function for one die is $D(x)=$ Therefore, the distribution of sums for rolling two dice is
Question: What does $D(1)$ count?
Answer:
Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?
Solution. Find two generating functions $F(x)$ and $G(x)$ such that $F(x) G(x)=D^{2}(x)$ and $F(1)=G(1)=6$. Rearrange the factors:
$D(x)^{2}=x^{2}(1+x)^{2}\left(1-x+x^{2}\right)^{2}\left(1+x+x^{2}\right)^{2}$.

$$
=\left[x(1+x)\left(1+x+x^{2}\right)\right] \cdot\left[x\left(1-x+x^{2}\right)^{2}(1+x)\left(1+x+x^{2}\right)\right]
$$

Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?
Solution. The generating function for one die is $D(x)=$ Therefore, the distribution of sums for rolling two dice is
Question: What does $D(1)$ count?
Answer:
Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?
Solution. Find two generating functions $F(x)$ and $G(x)$ such that $F(x) G(x)=D^{2}(x)$ and $F(1)=G(1)=6$. Rearrange the factors:
$D(x)^{2}=x^{2}(1+x)^{2}\left(1-x+x^{2}\right)^{2}\left(1+x+x^{2}\right)^{2}$.
$=\left[x(1+x)\left(1+x+x^{2}\right)\right] \cdot\left[x\left(1-x+x^{2}\right)^{2}(1+x)\left(1+x+x^{2}\right)\right]$
$=\left[x+2 x^{2}+2 x^{3}+x^{4}\right] \cdot\left[x+x^{3}+x^{4}+x^{5}+x^{6}+x^{8}\right]$

Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?
Solution. The generating function for one die is $D(x)=$ Therefore, the distribution of sums for rolling two dice is
Question: What does $D(1)$ count?
Answer:
Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?
Solution. Find two generating functions $F(x)$ and $G(x)$ such that $F(x) G(x)=D^{2}(x)$ and $F(1)=G(1)=6$. Rearrange the factors:
$D(x)^{2}=x^{2}(1+x)^{2}\left(1-x+x^{2}\right)^{2}\left(1+x+x^{2}\right)^{2}$.

$$
=\left[x(1+x)\left(1+x+x^{2}\right)\right] \cdot\left[x\left(1-x+x^{2}\right)^{2}(1+x)\left(1+x+x^{2}\right)\right]
$$

$$
=\left[x+2 x^{2}+2 x^{3}+x^{4}\right] \cdot\left[x+x^{3}+x^{4}+x^{5}+x^{6}+x^{8}\right]
$$

Die $F:\{1,2,2,3,3,4\}$ and die $G:\{1,3,4,5,6,8\}$

Vandermonde's Identity (p. 117)

$$
\binom{m+n}{k}=\sum_{j=0}^{k}\binom{m}{j}\binom{n}{k-j}
$$

Combinatorial proof
Generating function proof

Powers of generating functions

A special case of convolution gives the coefficients of powers of a g.f.:

$$
(A(x))^{2}=\sum_{k \geq 0}\left(\sum_{i=0}^{k} a_{i} a_{k-i}\right) x^{k}
$$

Powers of generating functions

A special case of convolution gives the coefficients of powers of a g.f.:

$$
(A(x))^{2}=\sum_{k \geq 0}\left(\sum_{i=0}^{k} a_{i} a_{k-i}\right) x^{k}=\sum_{k \geq 0}\left(\sum_{i_{1}+i_{2}=k} a_{i_{1}} a_{i_{2}}\right) x^{k} .
$$

Powers of generating functions

A special case of convolution gives the coefficients of powers of a g.f.:
$(A(x))^{2}=\sum_{k \geq 0}\left(\sum_{i=0}^{k} a_{i} a_{k-i}\right) x^{k}=\sum_{k \geq 0}\left(\sum_{i_{1}+i_{2}=k} a_{i_{1}} a_{i_{2}}\right) x^{k}$.
Similarly,

$$
(A(x))^{n}=\sum_{k \geq 0}\left(\sum_{i_{1}+i_{2}+\cdots+i_{n}=k} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}\right) x^{k} .
$$

Powers of generating functions

A special case of convolution gives the coefficients of powers of a g.f.:
$(A(x))^{2}=\sum_{k \geq 0}\left(\sum_{i=0}^{k} a_{i} a_{k-i}\right) x^{k}=\sum_{k \geq 0}\left(\sum_{i_{1}+i_{2}=k} a_{i_{1}} a_{i_{2}}\right) x^{k}$.
Similarly,

$$
(A(x))^{n}=\sum_{k \geq 0}\left(\sum_{i_{1}+i_{2}+\cdots+i_{n}=k} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}\right) x^{k} .
$$

Conclusion:

$\left[x^{k}\right](A(x))^{n}$ counts sequences of objects $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$, all of type A, with a total size (summed over all objects) of k.

Powers of generating functions

A special case of convolution gives the coefficients of powers of a g.f.:
$(A(x))^{2}=\sum_{k \geq 0}\left(\sum_{i=0}^{k} a_{i} a_{k-i}\right) x^{k}=\sum_{k \geq 0}\left(\sum_{i_{1}+i_{2}=k} a_{i_{1}} a_{i_{2}}\right) x^{k}$.
Similarly,

$$
(A(x))^{n}=\sum_{k \geq 0}\left(\sum_{i_{1}+i_{2}+\cdots+i_{n}=k} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}\right) x^{k} .
$$

Conclusion:

$\left[x^{k}\right](A(x))^{n}$ counts sequences of objects $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$, all of type A, with a total size (summed over all objects) of k.

Example. What is the generating function for the number of points that a basketball team can score if they hit a sequence of 10 baskets?

In how many ways can they score 20 points in those 10 baskets?

Compositions

Question: In how many ways can we write a positive integer n as a sum of positive integers?

Compositions

Question: In how many ways can we write a positive integer n as a sum of positive integers?

If order doesn't matter:
A partition: $n=p_{1}+p_{2}+\cdots+p_{\ell}$ for positive integers $p_{1}, p_{2} \ldots, p_{\ell}$ satisfying $p_{1} \geq p_{2} \geq \cdots \geq p_{\ell}$.

Compositions

Question: In how many ways can we write a positive integer n as a sum of positive integers?

If order doesn't matter:
A partition: $n=p_{1}+p_{2}+\cdots+p_{\ell}$ for positive integers $p_{1}, p_{2} \ldots, p_{\ell}$ satisfying $p_{1} \geq p_{2} \geq \cdots \geq p_{\ell}$.

If order does matter:
A composition: $n=i_{1}+i_{2}+\cdots+i_{\ell}$ for positive integers $i_{1}, i_{2} \ldots, i_{\ell}$ with no restrictions.

Compositions

Question: In how many ways can we write a positive integer n as a sum of positive integers?

If order doesn't matter:
A partition: $n=p_{1}+p_{2}+\cdots+p_{\ell}$ for positive integers $p_{1}, p_{2} \ldots, p_{\ell}$ satisfying $p_{1} \geq p_{2} \geq \cdots \geq p_{\ell}$.

If order does matter:
A composition: $n=i_{1}+i_{2}+\cdots+i_{\ell}$ for positive integers $i_{1}, i_{2} \ldots, i_{\ell}$ with no restrictions.
Example. There are 2^{n-1} compositions of n. When $n=4$:

```
            4
    3+1
    2+2
    2+1+1
    1+1+1+1
```


Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=$

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=$

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=$

- This is an infinite sum of (likely infinite) power series. Is this OK?
- The constant term h_{0} of $H(x)$ only makes sense if \qquad

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=$

- This is an infinite sum of (likely infinite) power series. Is this OK?
- The constant term h_{0} of $H(x)$ only makes sense if $g_{0}=0$.

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$. What can we learn about the composition $H(x)=F(G(x))$?

Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=$

- This is an infinite sum of (likely infinite) power series. Is this OK?
- The constant term h_{0} of $H(x)$ only makes sense if $g_{0}=0$.
- This implies that x^{n} divides $G(x)^{n}$. Hence, there are at most $n-1$ summands which contain x^{n-1}. We conclude that the infinite sum makes sense.

Compositions of Generating Functions

Question: Let $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ and $G(x)=\sum_{n \geq 0} g_{n} x^{n}$.
What can we learn about the composition $H(x)=F(G(x))$?
Investigate $F(x)=1 /(1-x)$.
$H(x)=F(G(x))=\frac{1}{1-G(x)}=$

- This is an infinite sum of (likely infinite) power series. Is this OK?
- The constant term h_{0} of $H(x)$ only makes sense if $g_{0}=0$.
- This implies that x^{n} divides $G(x)^{n}$. Hence, there are at most $n-1$ summands which contain x^{n-1}. We conclude that the infinite sum makes sense.
For a general composition with $g_{0}=0$,
$F(G(x))=\sum_{n \geq 0} f_{n} G(x)^{n}=f_{0}+f_{1} G(x)+f_{2} G(x)^{2}+f_{3} G(x)^{3}+\cdots$.

Compositions. of. Generating Functions.

Interpreting $\frac{1}{1-G(x)}=1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$:
Recall: The generating function $G(x)^{n}$ counts sequences of length n of objects $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, each of type G, and the coefficient $\left[x^{k}\right]\left(G(x)^{n}\right)$ counts those n-sequences that have total size equal to k.

Compositions. of. Generating Functions.

Interpreting $\frac{1}{1-G(x)}=1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$:
Recall: The generating function $G(x)^{n}$ counts sequences of length n of objects $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, each of type G, and the coefficient $\left[x^{k}\right]\left(G(x)^{n}\right)$ counts those n-sequences that have total size equal to k.

Conclusion: As long as $g_{0}=0$, then $1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$ counts sequences of any length of objects of type G, and the coefficient $\left[x^{k}\right] \frac{1}{1-G(x)}$ counts those that have total size equal to k.

Compositions. of. Generating Functions.

Interpreting $\frac{1}{1-G(x)}=1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$:
Recall: The generating function $G(x)^{n}$ counts sequences of length n of objects $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, each of type G, and the coefficient $\left[x^{k}\right]\left(G(x)^{n}\right)$ counts those n-sequences that have total size equal to k.

Conclusion: As long as $g_{0}=0$, then $1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$ counts sequences of any length of objects of type G, and the coefficient $\left[x^{k}\right] \frac{1}{1-G(x)}$ counts those that have total size equal to k.
Alternatively: Interpret $\left[x^{k}\right] \frac{1}{1-G(x)}$ thinking of k as this total size.
First, find all ways to break down k into integers $i_{1}+\cdots+i_{\ell}=k$.
Then create all sequences of objects of type G in which object j has size i_{j}.

Compositions. of. Generating Functions.

Interpreting $\frac{1}{1-G(x)}=1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$:
Recall: The generating function $G(x)^{n}$ counts sequences of length n of objects $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, each of type G, and the coefficient $\left[x^{k}\right]\left(G(x)^{n}\right)$ counts those n-sequences that have total size equal to k.
Conclusion: As long as $g_{0}=0$, then $1+G(x)^{1}+G(x)^{2}+G(x)^{3}+\cdots$ counts sequences of any length of objects of type G, and the coefficient $\left[x^{k}\right] \frac{1}{1-G(x)}$ counts those that have total size equal to k.
Alternatively: Interpret $\left[x^{k}\right] \frac{1}{1-G(x)}$ thinking of k as this total size. First, find all ways to break down k into integers $i_{1}+\cdots+i_{\ell}=k$. Then create all sequences of objects of type G in which object j has size i_{j}.
Think: A composition of generating functions equals a composition. of. generating. functions.

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i ".

What does size correspond to?

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i ".

What does size correspond to?
How many have value i ?

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i ".

What does size correspond to?
How many have value i? Exactly one: the number i.
So the generating function for our objects is $G(x)=0+1 x^{1}+1 x^{2}+1 x^{3}+1 x^{4}+\cdots=$

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i ".

What does size correspond to?
How many have value i? Exactly one: the number i.
So the generating function for our objects is
$G(x)=0+1 x^{1}+1 x^{2}+1 x^{3}+1 x^{4}+\cdots=$
We conclude that the generating function for compositions is
$H(x)=\frac{1}{1-G(x)}=$

An Example, Compositions

Example. How many compositions of k are there?
Solution. A composition of k corresponds to a sequence (i_{1}, \ldots, i_{ℓ}) of positive integers (of any length) that sums to k.

The objects in the sequence are positive integers; we need the g.f. that counts how many positive integers there are with "size i ".

What does size correspond to?
How many have value i? Exactly one: the number i.
So the generating function for our objects is
$G(x)=0+1 x^{1}+1 x^{2}+1 x^{3}+1 x^{4}+\cdots=$
We conclude that the generating function for compositions is $H(x)=\frac{1}{1-G(x)}=$
So the number of compositions of n is

A Composition Example

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

A Composition Example

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of platoons of size (i_{1}, \ldots, i_{ℓ}).

Given i soldiers in a platoon, in how many ways can we assign the platoon a leader? \qquad

A Composition Example

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of platoons of size (i_{1}, \ldots, i_{ℓ}).

Given i soldiers in a platoon, in how many ways can we assign the platoon a leader? \qquad
Therefore $G(x)=$

A Composition Example

Example. How many ways are there to take a line of k soldiers, divide the line into non-empty platoons, and from each platoon choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of platoons of size (i_{1}, \ldots, i_{ℓ}).

Given i soldiers in a platoon, in how many ways can we assign the platoon a leader? \qquad
Therefore $G(x)=$
And the generating function for such a military breakdown is

$$
H(x)=\frac{1}{1-G(x)}=\frac{1-2 x+x^{2}}{1-3 x+x^{2}}
$$

Domino Tilings

Example. How many square-domino tilings are there of a $1 \times n$ board?

Domino Tilings

Example. How many square-domino tilings are there of a $1 \times n$ board?
Solution. A tiling corresponds to a sequence (i_{1}, \ldots, i_{ℓ}), where i_{j} \qquad .

Domino Tilings

Example. How many square-domino tilings are there of a $1 \times n$ board?
Solution. A tiling corresponds to a sequence (i_{1}, \ldots, i_{ℓ}), where i_{j} \qquad .
So $G(x)=$ \qquad , and therefore $H(x)=$ \qquad .

Domino Tilings

Example. How many square-domino tilings are there of a $1 \times n$ board?
Solution. A tiling corresponds to a sequence (i_{1}, \ldots, i_{ℓ}), where i_{j} \qquad .
So $G(x)=$ \qquad , and therefore $H(x)=$ \qquad .

Another way to see this:

		x^{1}	x	$x^{2} x^{3}$	${ }^{3} x^{4}$	${ }^{4} x^{5}$	$x^{5} x^{6}$	$x^{6} x^{7}$	${ }^{7} x^{8}$	${ }^{8} x^{9}$	x^{10}	x^{11}	x^{12}
$G(x)^{0}=$													
$G(x)^{1}=$													
$G(x)^{2}=$													
$G(x)^{3}=$													
$G(x)^{4}=$													
$G(x)^{5}=$													
$G(x)^{6}=$													
$1 /(1-G(x))=$													

