Combinatorial statistics

Given a set of combinatorial objects A, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $A \to \mathbb{Z}_{\geq 0}$.

Combinatorial statistics

Given a set of combinatorial objects A, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $A \to \mathbb{Z}_{\geq 0}$.

Example. Let S be the set of subsets of $\{1,2,3\}$.

The cardinality of a set is a combinatorial statistic on S.

$$ig|\emptysetig|=0 \qquad ig|\{1\}ig|=1 \qquad ig|\{2\}ig|=1 \qquad ig|\{3\}ig|=1 \ ig|\{1,2\}ig|=2 \quad ig|\{1,3\}ig|=2 \quad ig|\{2,3\}ig|=2 \quad ig|\{1,2,3\}ig|=3$$

Combinatorial statistics

Given a set of combinatorial objects A, a **combinatorial statistic** is an integer given to every element of the set.

In other words, it is a function $A \to \mathbb{Z}_{\geq 0}$.

Example. Let S be the set of subsets of $\{1, 2, 3\}$.

The cardinality of a set is a combinatorial statistic on S.

$$ig|\emptysetig|=0 \qquad ig|\{1\}ig|=1 \qquad ig|\{2\}ig|=1 \qquad ig|\{3\}ig|=1 \ ig|\{1,2\}ig|=2 \quad ig|\{1,3\}ig|=2 \quad ig|\{2,3\}ig|=2 \quad ig|\{1,2,3\}ig|=3$$

Combinatorial statistics provide a refinement of counting.

Combinatorial statistics

Given a set of combinatorial objects A, a **combinatorial statistic** is an integer given to every element of the set.

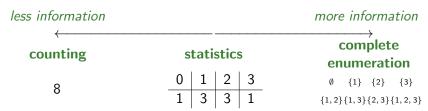
In other words, it is a function $\mathcal{A} \to \mathbb{Z}_{>0}$.

Example. Let S be the set of subsets of $\{1, 2, 3\}$.

The cardinality of a set is a combinatorial statistic on S.

$$ig|\emptysetig|=0 \qquad ig|\{1\}ig|=1 \qquad ig|\{2\}ig|=1 \qquad ig|\{3\}ig|=1 \ ig|\{1,2\}ig|=2 \quad ig|\{1,3\}ig|=2 \quad ig|\{2,3\}ig|=2 \quad ig|\{1,2,3\}ig|=3$$

Combinatorial statistics provide a refinement of counting.



Statistics and Permutations

Questions involving combinatorial statistics:

▶ What is the *distribution* of the statistics?

Statistics and Permutations

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the average size of an object in the set?

Statistics and Permutations

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?
- ▶ Which statistics have the same distribution?
 - ► Insight into their structure.
 - Provides non-trivial bijections in the set?

Statistics and Permutations

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?
- Which statistics have the same distribution?
 - Insight into their structure.
 - Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.

Representations of permutations

```
One-line notation: \pi = 416253 Cycle notation: \pi = (142)(36)(5)
```

Statistics and Permutations

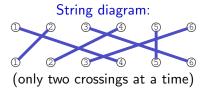
Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?
- ▶ Which statistics have the same distribution?
 - ▶ Insight into their structure.
 - ▶ Provides non-trivial bijections in the set?

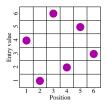
A especially rich playground involves permutation statistics.

Representations of permutations

One-line notation: $\pi = 416253$ Cycle notation: $\pi = (142)(36)(5)$



Matrix-like diagram:



Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since 4×1 , 6×2 , 5×3 .

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the number of descents in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since $4 \ge 1$, $6 \ge 2$, $5 \ge 3$.

Question: How many *n*-permutations have *d* descents?

$$des(12) = 0$$
 $des(123) =$ $des(213) =$ $des(312) =$ $des(21) =$ $des(312) =$ $des(312) =$ $des(312) =$ $des(312) =$

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since $4 \searrow 1$, $6 \searrow 2$, $5 \searrow 3$.

Question: How many *n*-permutations have *d* descents?

$$des(12) = 0$$
 $des(123) =$ $des(213) =$ $des(312) =$ $des(312) =$ $des(21) =$ $des(321) =$

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $des(\pi)$?

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A descent is a position i such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since 4×1 , 6×2 , 5×3 .

Question: How many n-permutations have d descents?

$$des(12) = 0$$
 $des(123) =$ $des(213) =$ $des(312) =$ $des(21) =$ $des(312) =$ $des(312) =$ $des(312) =$ $des(312) =$

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $des(\pi)$?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has _____ descents.

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A descent is a position i such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the number of descents in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since $4 \ge 1$, $6 \ge 2$, $5 \ge 3$.

Question: How many n-permutations have d descents?

$$des(12) = 0$$
 $des(123) =$ $des(213) =$ $des(312) =$ $des(312) =$ $des(21) = 1$ $des(321) =$ $des(321) =$ $des(321) =$

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $des(\pi)$?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has _____ descents.

These are the Eulerian numbers.

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the **number of inversions** in π .

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the number of inversions in π .

Example. When $\pi = 416253$, $inv(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3.

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. \odot

An inversion is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the number of inversions in π .

Example. When $\pi = 416253$, $inv(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3. In a string diagram $inv(\pi) = number of crossings$.

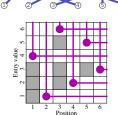
Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. \odot

An inversion is a pair i < j such that $\pi_i > \pi_j$.

Define $inv(\pi)$ as the number of inversions in π .

Example. When $\pi=416253$, $inv(\pi)=7$ since 4>1, 4>2, 4>3, 6>2, 6>5, 6>3, 5>3. In a string diagram $inv(\pi)=$ number of crossings. In a matrix diagram $inv(\pi)$, draw *Rothe diagram*:



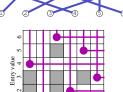
Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

An inversion is a pair i < j such that $\pi_i > \pi_j$.

Define $inv(\pi)$ as the number of inversions in π .

Example. When $\pi=416253$, $inv(\pi)=7$ since 4>1, 4>2, 4>3, 6>2, 6>5, 6>3, 5>3. In a string diagram $inv(\pi)=$ number of crossings. In a matrix diagram $inv(\pi)$, draw *Rothe diagram*:



inv(312) =

inv(321) =

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the number of inversions in π .

Example. When $\pi=416253$, $inv(\pi)=7$ since 4>1, 4>2, 4>3, 6>2, 6>5, 6>3, 5>3. In a string diagram $inv(\pi)=$ number of crossings. In a matrix diagram $inv(\pi)$, draw *Rothe diagram*:

$$inv(21) = 1$$
 $inv(132) =$

inv(12) = 0 $inv(123) = ____$

$Inv(213) = _{}$	Inv(312) =
inv(231) =	inv(321) =

n\i 1 2 3 4	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $inv(\pi)$?

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define $inv(\pi)$ as the number of inversions in π .

Example. When $\pi=416253$, $inv(\pi)=7$ since 4>1, 4>2, 4>3, 6>2, 6>5, 6>3, 5>3. In a string diagram $inv(\pi)=$ number of crossings. In a matrix diagram $inv(\pi)$, draw *Rothe diagram*:

$n \setminus i$	0	1	2	3	4	5	6
1	1						
2	1	1					
2 3 4	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $inv(\pi)$?

The inversion number is a good way to count how "far away" a permutation is from the identity.

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the major index of π , to be sum of the descents of π .

 $[{\sf Named\ after\ Major\ Percy\ MacMahon}.\ ({\sf British\ army},\ {\sf early\ 1900's})]$

Example. When $\pi = 416253$, maj(π) = 9 since the descents of π are in positions 1, 3, and 5.

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π .

[Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

$$\begin{array}{lll} {\sf maj}(12) = 0 & {\sf maj}(123) = __ & {\sf maj}(213) = __ & {\sf maj}(312) = __ \\ {\sf maj}(21) = 1 & {\sf maj}(132) = __ & {\sf maj}(231) = __ & {\sf maj}(321) = __ & \\ \end{array}$$

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π .

[Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

$$maj(12) = 0$$
 $maj(123) =$ $maj(213) =$ $maj(312) =$ $maj(21) =$ $maj(312) =$ $maj(21) =$ $maj(321) =$ $maj(321) =$

$n \backslash m$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $maj(\pi)$?

The distribution of maj(π) IS THE SAME AS the distribution of inv(π)!

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

$$maj(12) = 0$$
 $maj(123) =$ $maj(213) =$ $maj(312) =$ $maj(21) = 1$ $maj(321) =$ $maj(321) =$ $maj(321) =$

$n \backslash m$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for maj(π)? The distribution of maj(π)

IS THE SAME AS the distribution of $\operatorname{inv}(\pi)$!

A statistic that has the same distribution as inv is called **Mahonian**.

q-analogs

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q}=\left(1+q+q^2+\cdots+q^{n-2}+q^{n-1}\right) \text{ is a}$$
 q -analog of p because $\lim_{q\to 1}\frac{1-q^n}{1-q}=p$.

q-analogs

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q}=\left(1+q+q^2+\cdots+q^{n-2}+q^{n-1}\right) \text{ is a } q\text{-analog of } n \text{ because } \lim_{q\to 1}\frac{1-q^n}{1-q}=n.$$

We write $[n]_q = \frac{1-q^n}{1-q}$.

q-analogs

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q}=\left(1+q+q^2+\cdots+q^{n-2}+q^{n-1}\right) \text{ is a } q\text{-analog of } n \text{ because } \lim_{q\to 1}\frac{1-q^n}{1-q}=n.$$

We write $[n]_q = \frac{1-q^n}{1-q}$.

q-analogs work hand in hand with combinatorial statistics.

If stat is a combinatorial statistic on a set S (stat : $S \mapsto \mathbb{N}$), then $\sum_{s \in S} q^{\operatorname{stat}(s)}$ is a q-analog of |S|

q-analogs

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q}=\left(1+q+q^2+\cdots+q^{n-2}+q^{n-1}\right) \text{ is a } q\text{-analog of } n \text{ because } \lim_{q\to 1}\frac{1-q^n}{1-q}=n.$$

We write $[n]_q = \frac{1-q^n}{1-q}$.

q-analogs work hand in hand with combinatorial statistics.

If stat is a combinatorial statistic on a set S (stat : $S \mapsto \mathbb{N}$), then $\sum q^{\mathrm{stat}(s)}$ is a q-analog of |S| because

$$\lim_{q \to 1} \sum_{s \in S} q^{\operatorname{stat}(s)} = \sum_{s \in S} 1^{\operatorname{stat}(s)} = \sum_{s \in S} 1 = |S|.$$

Inversion statistics

Inversion statistics

n	$\sum_{\pi \in S_n} q^{inv(\pi)}$
1	$1q^0 = 1$
2	$1q^0 + 1q^1 = (1+q)$
3	$1q^0 + 2q^1 + 2q^2 + 1q^3$ = $(1+q+q^2)(1+q)$
4	$1q^0 + 3q^1 + 5q^2 + 6q^3 + 5q^4 + 3q^5 + 1q^6 =$

Inversion statistics

n	$\sum_{\pi \in S_n} q^{inv(\pi)}$
1	$1q^0 = 1$
2	$1q^0 + 1q^1 = (1+q)$
3	$\begin{vmatrix} 1q^0 + 2q^1 + 2q^2 + 1q^3 \end{vmatrix} = (1+q+q^2)(1+q)$
4	$1q^{0} + 3q^{1} + 5q^{2} + 6q^{3} + 5q^{4} + 3q^{5} + 1q^{6} =$

Conjecture:
$$\sum_{\pi \in S_n} q^{\text{inv}(\pi)} =$$

Inversion statistics

n	$\sum_{\pi \in S_n} q^{inv(\pi)}$
1	$1q^0 = 1$
2	$1q^0 + 1q^1 = (1+q)$
3	$ 1q^0 + 2q^1 + 2q^2 + 1q^3 = (1+q+q^2)(1+q) $
4	$1q^{0} + 3q^{1} + 5q^{2} + 6q^{3} + 5q^{4} + 3q^{5} + 1q^{6} =$

Conjecture:
$$\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q \cdots [1]_q = [n]_q!$$
, the *q*-factorial.

Inversion statistics

Question: What is the generating function $\sum_{\pi \in S_n} q^{\text{inv}(\pi)}$?

n	$\sum_{\pi \in S_n} q^{inv(\pi)}$
1	$1q^0 = 1$
2	$1q^0 + 1q^1 = (1+q)$
3	$\left 1q^0 + 2q^1 + 2q^2 + 1q^3 \right = (1+q+q^2)(1+q)$
4	$1q^0 + 3q^1 + 5q^2 + 6q^3 + 5q^4 + 3q^5 + 1q^6 =$

Conjecture:
$$\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q \cdots [1]_q = [n]_q!$$
, the *q*-factorial.

Claim: This equation makes sense when q = 1.

Inversion Statistics

```
Theorem: \sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} = [n]_q!

Proof. There exists a bijection
\left\{\begin{array}{c}\mathsf{permutations}\\\pi \in S_n\end{array}\right\} \longleftrightarrow \left\{\begin{array}{c}\mathsf{lists}\;(a_1,\ldots,a_n)\\\mathsf{where}\;0 \leq a_i \leq n-i\end{array}\right\}.
```

Inversion Statistics

Theorem: $\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q!$

Proof. There exists a bijection

$$\left\{\begin{array}{c} \mathsf{permutations} \\ \pi \in \mathcal{S}_n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \mathsf{lists}\left(a_1, \dots, a_n\right) \\ \mathsf{where} \ 0 \leq a_i \leq n-i \end{array}\right\}.$$

Given a permutation π , create its **inversion table**. Define a_i to be the number of entries j to the left of i that are smaller than i. Then $\text{inv}(\pi) = a_1 + a_2 + \cdots + a_n$.

Inversion Statistics

Theorem: $\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q!$

Proof. There exists a bijection

$$\left\{\begin{array}{c} \mathsf{permutations} \\ \pi \in \mathcal{S}_n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \mathsf{lists} \ (a_1, \dots, a_n) \\ \mathsf{where} \ 0 \leq a_i \leq n-i \end{array}\right\}.$$

Given a permutation π , create its **inversion table**. Define a_i to be the number of entries j to the left of i that are smaller than i.

Then $inv(\pi) = a_1 + a_2 + \cdots + a_n$.

Example. The inversion table of $\pi = 43152$ is (3, 2, 0, 1, 0).

Inversion Statistics

Theorem: $\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q!$

Proof. There exists a bijection

$$\left\{\begin{array}{c} \mathsf{permutations} \\ \pi \in \mathcal{S}_n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \mathsf{lists}\; (a_1, \dots, a_n) \\ \mathsf{where}\; 0 \leq a_i \leq n-i \end{array}\right\}.$$

Given a permutation π , create its **inversion table**. Define a_i to be the number of entries j to the left of i that are smaller than i.

Then $inv(\pi) = a_1 + a_2 + \cdots + a_n$.

Example. The inversion table of $\pi = 43152$ is (3, 2, 0, 1, 0).

$$\sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} = \sum_{a_1=0}^{n-1} \sum_{a_2=0}^{n-2} \cdots \sum_{a_n=0}^{0} q^{a_1 + a_2 + \dots + a_n}$$

$$= \left(\sum_{a_1=0}^{n-1} q^{a_1}\right) \left(\sum_{a_2=0}^{n-2} q^{a_2}\right) \cdots \left(\sum_{a_n=0}^{0} q^{a_n}\right)$$

$$= [n]_q \quad [n-1]_q \quad \cdots \quad [1]_q \quad = [n]_q!$$

Notes

We said that inv and maj are equidistributed. Two possible proofs:

- ▶ Find a bijection $f: S_n \to S_n$ such that maj $(\pi) = \text{inv}(f(\pi))$.
- lacksquare Or prove $\sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi \in S_n} q^{\mathsf{maj}(\pi)}$.

Notes

We said that inv and maj are equidistributed. Two possible proofs:

- ▶ Find a bijection $f: S_n \to S_n$ such that maj $(\pi) = \text{inv}(f(\pi))$.
- $lackbox{ Or prove } \sum_{\pi \in \mathcal{S}_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi \in \mathcal{S}_n} q^{\mathsf{maj}(\pi)}.$

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

These *polynomials* are called the q-binomial coefficients or Gaussian polynomials.

Notes

We said that inv and maj are equidistributed. Two possible proofs:

- ▶ Find a bijection $f: S_n \to S_n$ such that maj $(\pi) = \text{inv}(f(\pi))$.
- $lackbox{ Or prove } \sum_{\pi \in \mathcal{S}_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi \in \mathcal{S}_n} q^{\mathsf{maj}(\pi)}.$

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

These *polynomials* are called the q-binomial coefficients or Gaussian polynomials.

$$\blacktriangleright \lim_{q \to 1} {n \brack k}_q = {n \choose k}.$$

Notes

We said that inv and maj are equidistributed. Two possible proofs:

- ▶ Find a bijection $f: S_n \to S_n$ such that maj $(\pi) = \text{inv}(f(\pi))$.
- $lackbox{ Or prove } \sum_{\pi \in \mathcal{S}_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi \in \mathcal{S}_n} q^{\mathsf{maj}(\pi)}.$

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

These *polynomials* are called the q-binomial coefficients or Gaussian polynomials.

- $\blacktriangleright \lim_{q \to 1} {n \brack k}_q = {n \choose k}.$
- ► They are indeed polynomials.
- ightharpoonup Example. ${4 \brack 2}_q = 1 + q + 2q^2 + q^3 + q^4$

Notes

We said that inv and maj are equidistributed. Two possible proofs:

- ▶ Find a bijection $f: S_n \to S_n$ such that maj $(\pi) = \text{inv}(f(\pi))$.
- $lackbox{ Or prove } \sum_{\pi \in \mathcal{S}_n} q^{\mathsf{inv}(\pi)} = \sum_{\pi \in \mathcal{S}_n} q^{\mathsf{maj}(\pi)}.$

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

These *polynomials* are called the q-binomial coefficients or Gaussian polynomials.

- $ightharpoonup \lim_{q \to 1} {n \brack k}_q = {n \choose k}.$
- ► They are indeed polynomials.
- ightharpoonup Example. $\begin{bmatrix} 4\\2 \end{bmatrix}_q = 1 + q + 2q^2 + q^3 + q^4$

Combinatorial interpretations of q-binomial coefficients!

Combinatorial interpretations of q-binomial coefficients

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k,2^{n-k}\}$. Define $\operatorname{inv}(\pi) = |\{i < j \colon \pi(i) > \pi(j)\}|$.

Example. $\pi=1122121122$ is a permutation of $\{1^5,2^5\}$. Then $\mathrm{inv}(\pi)=0+0+3+3+0+2+0+0+0+0=8$.

Combinatorial interpretations of q-binomial coefficients

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $\operatorname{inv}(\pi) = |\{i < j \colon \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$.

Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\mathsf{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Combinatorial interpretations of q-binomial coefficients

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $\operatorname{inv}(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$.

Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\text{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from (0,0) to (a,b).

Combinatorial interpretations of q-binomial coefficients

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $\operatorname{inv}(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$.

Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\mathsf{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from (0,0) to (a,b). Let area(P) be the area above a path P. Then $\sum_{P\in\mathcal{P}}q^{\operatorname{area}(P)}={a+b\brack a}_a$. (Note $|\mathcal{P}|={a+b\brack a}_a$.)

Combinatorial interpretations of q-binomial coefficients

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $\operatorname{inv}(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$.

Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\mathsf{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider the set $\mathcal P$ of lattice paths from (0,0) to (a,b). Let $\operatorname{area}(P)$ be the area above a path P. Then $\sum_{P\in\mathcal P}q^{\operatorname{area}(P)}={a+b\brack a}_q$. (Note $|\mathcal P|={a+b\choose a}$.)

This can also be used to give a q-analog of the Catalan numbers.

There's always more to learn!!!

References:

Miklós Bóna. Combinatorics of Permutations, CRC, 2004.

T. Kyle Petersen. Two-sided Eulerian numbers via balls in boxes. http://arxiv.org/abs/1209.6273

The Combinatorial Statistic Finder. http://findstat.org/