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COLUMN CONVEX MATRICES,

G-CYCLIC ORDERS, AND FLOW POLYTOPES

RAFAEL S. GONZÁLEZ D’LEÓN, CHRISTOPHER R. H. HANUSA, ALEJANDRO H. MORALES,
AND MARTHA YIP

Abstract. We study polytopes defined by inequalities of the form
∑

i∈I zi ≤ 1 for I ⊆ [d]
and nonnegative zi where the inequalities can be reordered into a matrix inequality involving
a column-convex {0, 1}-matrix. These generalize polytopes studied by Stanley, and the
consecutive coordinate polytopes of Ayyer, Josuat-Vergès, and Ramassamy. We prove an
integral equivalence between these polytopes and flow polytopes of directed acyclic graphs
G with a Hamiltonian path, which we call spinal graphs. We show that the volume of
these flow polytopes is the number of extensions of a set of partial cyclic orders defined
by the graph G. As a special case we recover results on volumes of consecutive coordinate
polytopes.

We study the combinatorics of k-Euler numbers, which are generalizations of the classical
Euler numbers, and which arise as volumes of flow polytopes of a special family of spinal
graphs. We show that their refinements, Ramassamy’s k-Entringer numbers, can be realized
as values of a Kostant partition function, satisfy a family of generalized boustrophedon
recurrences, and are log concave along root directions.

Finally, via our main integral equivalence and the known formula for the h∗-polynomial
of consecutive coordinate polytopes, we give a combinatorial formula for the h∗-polynomial
of flow polytopes of non-nested spinal graphs. For spinal graphs in general, we present a
conjecture on upper and lower bounds for their h∗-polynomial.

1. Introduction

1.1. A motivating question of Stanley. Stanley proposes the question [31, Exercise
4.56 (d)] of finding a formula for the volume of the polytope Cd,k in R

d defined by the
inequalities zi ≥ 0 for all i = 1, . . . , d, and

(1) zi+1 + zi+2 + · · ·+ zi+k ≤ 1,

for all i = 0, . . . , d− k.
A polytope of this form is an integral polytope: one whose vertices all lie in Z

d. It is
well-known that the Euclidean volume of a d-dimensional integral polytope P is of the form
volP/d! where volP ∈ Z≥0. The quantity volP is commonly known as the normalized
volume of P, and this is the notion of volume we use in this article.

Stanley proves that vol Cd,2 is the d-th Euler number Ed by showing that Cd,2 is the chain
polytope of the zigzag poset on d elements [31, Exercise 4.56 (b) and (c)], whose volume is
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given by the number of linear extensions of the poset [30]. For general k, Stanley gives a set
of difference equations [31, Exercise 4.56 (d)] that can be used to recursively compute vol Cd,k
but leaves open the problem of finding a direct combinatorial formula for this volume.

Ayyer, Josuat-Vergès, and Ramassamy [3] give a beautiful answer to Stanley’s question
by showing that the volume of Cd,k is the number of total cyclic orders that are extensions
of a collection of partial cyclic orders, which has the same spirit as the result of Stanley in
the case k = 2. Furthermore, they apply their method to compute the volumes of polytopes
belonging to the larger family of consecutive coordinate polytopes, in which the defining
inequalities are of the form

(2) zi + zi+1 + · · ·+ zi′ ≤ 1

for integers i < i′. This motivates studying polytopes whose defining inequalities are not
comprised of consecutive coordinates.

We define the polytope BS for a collection S of subsets of [d] := {1, . . . , d} to be

BS =

{
(z1, . . . , zd) ∈ R

d
≥0

∣∣∣∣
∑

i∈I

zi ≤ 1 for I ∈ S

}
.

Consecutive coordinate polytopes are examples of such polytopes in the special case when
S is a collection of intervals [i, i′] := {i, i+ 1, . . . , i′}.

It is known that the polytopes Cd,k are not chain polytopes of posets; see [3, Remark 2.6].
Instead, we are able to show that a subfamily of polytopes of the form BS (which includes
Cd,k and all consecutive coordinate polytopes) are integrally equivalent to flow polytopes of
a special type of graph.

1.2. Convex {0, 1}-matrices and flow polytopes. A collection of n inequalities of the
form (1) and (2) can be written as a matrix inequality of the form Mz ≤ b for an n × d
{0, 1}-matrix M and a nonnegative vector b ∈ R

n
≥0. We define polytopes BM,b as those of

the form
BM,b =

{
z ∈ R

d
≥0

∣∣∣ Mz ≤ b
}
,

where M has no columns that are identically zero, and develop their theory in Section 2.
Every consecutive coordinate polytope is a polytope of the form BM,1 where 1 = (1, . . . , 1)

and M is row convex—that is, the non-zero entries in every row are contiguous. (Similarly,
column-convex matrices are those in which the non-zero entries in every column are contigu-
ous.) In fact, in Lemma 5.2 we show through matrix operations that the class of consecutive
coordinate polytopes is the same as the class of polytopes BM,1 for matrices M that are si-
multaneously row and column convex (sometimes called interval matrices [28, Chapter 19]).

We prove that in the more general setting where M is a column convex matrix, the
polytope BM,b is integrally equivalent to a flow polytope of a directed acyclic graph G with
a Hamiltonian path, which we call a spinal graph.

Theorem 2.7. Let b ∈ Z
n, M an n× d column-convex matrix, and G its associated graph.

The polytope BM,b is integrally equivalent to the flow polytope FG(a) where

a = (b1, b2 − b1, . . . , bn − bn−1,−bn).

When b = 1, then a = e1 − en+1, and we write FG for the flow polytope FG(a). Sec-
tion 2 concludes by discussing operations on graphs that preserve integral equivalence of the
associated flow polytopes.

2



Theorem 2.7 has the benefit of transporting all the machinery of triangulations of flow
polytopes [10, 22, 17] and enumeration of lattice points and volumes of flow polytopes [4,
20, 6] to the family of polytopes associated to column-convex matrices, that in turn contains
the family of consecutive coordinate polytopes.

1.3. The combinatorics of flow polytope volumes. With our new integral equivalence,
it is natural to develop combinatorial tools to calculate the volume of the polytopes, which
we do in Sections 3–6.

Techniques to compute the volume and lattice points of flow polytopes have been exten-
sively studied in recent literature. Baldoni and Vergne [4] give a set of Lidskii formulas to
calculate the volume and lattices points of flow polytopes. Postnikov and Stanley (unpub-
lished) describe a triangulation that can be used to provide a different proof of the Lidskii
formulas when a = e1 − en+1. Meszaros and Morales [20] extend Postnikov and Stanley’s
triangulation to any netflow vector a. In [6] Benedetti et al. introduce gravity diagrams as
a family of combinatorial objects whose enumeration can be used as a tool to calculate the
volume. Section 3 presents the Lidskii volume formulas that are relevant to our present
work.

In Section 4 we discuss total cyclic orders and we introduce a pair of new combinatorial
objects called upper and lower G-cyclic orders for any spinal graph G. We use the Lidskii
formulas to prove that the enumeration of either gives the volume of the flow polytope FG.

Theorem 4.8. For a spinal graph G, the volume of the flow polytope FG is the number of
upper (or lower) G-cyclic orders. In other words,

volFG = A↑
G = A↓

G.

A significant proportion of flow polytopes that have been studied in the literature are
cases of flow polytopes of spinal graphs, so Theorem 4.8 has a broad scope of application.
Some examples of these graphs are Pitman-Stanley graphs [4], graphs used in Mészáros’
product formulas for volumes of flow polytopes [19], Corteel-Kim-Mészáros graphs [9], zigzag
graphs [6], and caracol graphs and their multigraph generalizations [6, 20, 34].

In Section 5 we show that when restricting to consecutive coordinate polytopes, of which
there are Catalan many by Proposition 5.12, the corresponding spinal graphs satisfy a non-
nested condition. For those graphs Proposition 5.7 shows that the upper and lower G-cyclic
orders coincide. Furthermore, Proposition 5.8 shows that these G-cyclic orders are exactly
the same as the total cyclic extensions of partial cyclic orders of [3]. In this sense, Theorem 4.8
can be seen as a generalization of Ayyer, Josuat-Vergès, and Ramassamy’s result that uses
techniques of flow polytopes instead of using polytope triangulations and a transfer map.

1.4. Distance graphs, k-Euler numbers, and k-Entringer numbers. Section 6 applies
our work to the family of distance graphs G(k, d+ k), which have vertex set [d+ k] and the
edges of the form (i, i+1) and (i, i+k). These graphs generalize the zigzag graphs G(2, d+2)
and correspond to the consecutive coordinate polytopes Cd,k studied in [3].

In Proposition 6.1 we prove that the number of vertices of FG(k,d+k) are given by a general-
ization of Fibonacci numbers. The volume volFG(k,d+k) can be seen as a k-generalization of
the Euler numbers since volFG(2,d+2) = Ed. Just as Entringer numbers refine Euler numbers,
Ramassamy [26] and Ayyer, Josuat-Vergès, and Ramassamy [3], define k-Entringer numbers
E(s1,...,sk) that refine volFG(k,d+k). We realize k-Entringer numbers as the number of certain
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integer flows on G(k, d+ k) and as evaluations of Kostant partition functions. By exploiting
the recursive nature of distance graphs, we show in Theorem 6.6 that the k-Entringer num-
bers can be computed recursively on k levels, extending the boustrophedon recursion of [3,
Theorem 7.4].

Another benefit of the flow polytope perspective is the following log-concavity result for
k-Entringer numbers. It is proved by presenting another way to realize the k-Entringer
numbers as evaluations of Kostant partition functions which enables us to apply a result
of Huh et al. [14, Proposition 11] related to the Alexandrov–Fenchel inequalities of mixed
volumes of polytopes [1, 11, 12].

Theorem 6.11. Let k ≥ 2 and N = d − k + 1 ≥ 0. Given s = (s1, . . . , sk) ∈ T k
N , then the

numbers Es are log-concave along root directions. That is,

E2
s
≥ Es−ei+ej

· Es+ei−ej
.

1.5. The h∗-polynomial of FG. In Section 7 we study the h∗-polynomial of FG, whose
coefficients sum to the volume of the polytope. In [3], the authors found that the h∗-
polynomial of the consecutive coordinate polytope is equal to the generating polynomial
of the descent statistic on the family of total cyclic extensions of the partial cyclic order
determined by its collection of intervals.

When translated to flow polytopes, this result becomes Theorem 7.4 which states that
when G is a non-nested graph, the h∗-polynomial of the flow polytope FG is

h∗
FG

(z) =
∑

γ∈AG

zdes(π(γ)).

This reinterpreted formula is not true for a general spinal graph G because the upper and
lower G-cyclic orders are not the same. However we are able to conjecture dominance bounds
on h∗

FG
(z) that have been verified for all simple spinal graphs G with up to 7 vertices.

Conjecture 7.6. Given a spinal graph G we have that

PA↓

G
,des

(z)⊳ h∗
FG

(z)⊳ PA↑

G
,des

(z).

In the above expression, PA,des(z) =
∑

γ∈A zdes(π(γ)).
Finally, Section 8 assembles directions of future work stemming from this paper, including

questions about the generating functions for k-Euler and k-Entringer numbers.

2. Column-convex matrices and flow polytopes

2.1. A key integral equivalence. In this section we prove an integral equivalence between
flow polytopes on spinal graphs and polytopes from column-convex matrices.

Definition 2.1. A directed graph G on vertex set V (G) = [n+1] is said to be a spinal graph
if its edge multiset E(G) contains at least one edge of the form (i, i+1) for each i = 1, . . . , n
and where every other edge in E(G) is directed from a smaller vertex to a larger vertex.
The former are called slack edges which we label xi and are said to make up the spine of
the graph (and if there are multiple edges of the form (i, i + 1), only one of them will be
considered slack), while the latter are called non-slack edges and are labeled yj. For an edge
e we write tail(e) for the initial vertex (or tail) of e and head(e) for the terminal vertex (or
head) of e.
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M =




1 1 0 0 0 0
1 1 1 0 0 0
0 1 0 1 1 0
0 0 0 1 1 1


 G =

1 2 3 4 5x1 x2 x3 x4

y1

y2

y3

y4

y5

y6

Figure 1. For the column-convex matrix M , its associated graph G has 10
edges, including the four slack edges of the spine and the six non-slack edges
from the columns of M .

All graphs in this article are spinal graphs and all matrices in this article are {0, 1}-
matrices; this will be assumed going forward.

A matrix is said to be column convex if it satisfies the property:

If i < i′ and entries Mi,j = Mi′,j = 1 then entry Mk,j = 1 for all i ≤ k ≤ i′.

A matrix is said to be row convex if it satisfies the property:

If j < j′ and entries Mi,j = Mi,j′ = 1 then entry Mi,k = 1 for all j ≤ k ≤ j′.

Matrices that are both row and column convex are said to be doubly convex. These matrices
are also called interval matrices [28, Example 7, Chapter 19].

Definition 2.2. Given a column-convex n× d matrix M with no columns identically zero,
define its associated graph G to have vertex set [n + 1] and n + d edges of two types: An
edge xi : (i, i+ 1) for i = 1, . . . , n and an edge yj : (ij, i

′
j) for every column j of M in which

the non-zero entries span from row ij to i′j − 1.
Given a spinal graph G on n + 1 vertices with d non-slack edges, define its associated

matrix M with dimensions n× d as follows. Draw the vertices of the graph G in ascending
order from left to right along a horizontal line. Place a 1 in position (i, j) of M if edge yj
crosses the vertical line drawn between vertices i and i+ 1 and a 0 otherwise.

These two operations are inverses of each other, which we state as the following proposition.
See Figure 1 for an example.

Proposition 2.3. There is a bijection between column-convex n × d matrices and spinal
graphs on n+ 1 vertices with n+ d edges.

Definition 2.4. For an n× d matrix M and an integer vector b ∈ Z
n, the polytope BM,b is

defined as
BM,b =

{
x ∈ R

d
≥0

∣∣ Mx ≤ b
}
.

Definition 2.5. Consider a graph G on [n + 1] and an integer net flow vector a ∈ Z
n+1

whose entries sum to zero. An a-flow on G is a tuple (fe)e∈E(G) of nonnegative real numbers
for which flow is conserved at every internal vertex. Mathematically,

∑

e∈E(G)
tail(e)=i

fe + ai =
∑

e∈E(G)
head(e)=i

fe

for i = 1, . . . , n + 1. The flow polytope FG(a) is defined as the set of a-flows on G. When
the flow vector a equals e1 − en+1, we will write FG = FG(e1 − en+1) for convenience.
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The vertices of FG are characterized as follows.

Proposition 2.6 ([13, Corollary 3.1]). Let G be a graph on [n + 1]. The vertices of FG

correspond to unit flows along paths from vertex 1 to vertex n+ 1.

Two lattice polytopes P ⊂ R
m and Q ⊂ R

n are integrally equivalent if there exists an
affine transformation ϕ : Rm → R

n whose restriction to P is a bijection ϕ : P → Q that
preserves the lattice. A key observation is that the polytopes associated to convex-column
matrices are integrally equivalent to flow polytopes.

Theorem 2.7. Let b ∈ Z
n, M an n× d column-convex matrix, and G its associated graph.

The polytope BM,b is integrally equivalent to the flow polytope FG(a) where

a = (b1, b2 − b1, . . . , bn − bn−1,−bn).

Proof. Given an a-flow (fe)e∈E(G), conservation of flow at vertex i is given by

(3) ai + fxi−1
+

∑

j∈[d]
head(yj)=i

fyj = fxi
+

∑

j∈[d]
tail(yj)=i

fyj .

For the set of n + 1 equations of the form of Equation (3), the flow conservation equation
at n + 1 is redundant. An equivalent set of equations describing FG(a) can be obtained by
adding Equation (3) for vertices 1 through i for i ∈ [n]:

bi = a1 + · · ·+ ai = fxi
+

∑

j∈[d]
tail(yj)=i

fyj .

Define a map ϕ : BM,b → R
n+d that sends the point z = (z1, . . . , zd) ∈ BM,b to a flow on G

by

fxi
= bi −

∑

j∈[d]
tail(yj)=i

zj and fyj = zj .

Writing ϕ(z) as the vector (fx1, . . . , fxn
, fy1, . . . , fyd), the map ϕ can be written as the affine

linear map

ϕ(z) =

[
−M
I

]
z+

[
b

0

]
,

where I denotes the d × d identity matrix and 0 = (0, . . . , 0). The map ϕ is an injection
whose image is FG(a) and preserves the affine lattices generated by each polytope. Therefore,
FG(a) and BM,b are integrally equivalent. �

Corollary 2.8. Let M be an n × d column-convex matrix with associated graph G and let
b ∈ Z

n. We have that

volBM,b = volFG(a)

where a = (b1, b2 − b1, . . . , bn − bn−1,−bn).
6



1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Figure 2. Three graphs G whose flow polytopes FG are integrally equivalent.
The last two graphs are reverses of each other.

2.2. Integrally equivalent flow polytopes through matrix operations. The integral
equivalence in Theorem 2.7 allows us to establish the integral equivalence of a family of flow
polytopes of different graphs related by transformations on their associated matrices. While
a reordering of the columns of the matrix only corresponds to a relabeling of the non-slack
edges, a reordering of the rows of the matrix is a more fruitful transformation.

Proposition 2.9. Let G and G′ be two graphs whose associated matrices M and M ′ differ
by a reordering of their rows. If b and b′ in Z

n are related by the same reordering and a and
a′ are defined by a = (b1, b2 − b1, . . . , bn − bn−1,−bn) and a′ = (b′1, b

′
2 − b′1, . . . , b

′
n − b′n−1,−b′n)

then FG(a) and FG′(a′) are integrally equivalent.

Proof. A reordering of the rows of M (and the corresponding entries of b) does not change
the polytope BM,b because the defining inequalities remain the same. The proposition follows
by Theorem 2.7 and transitivity. �

When b = k = (k, k, . . . , k) for some positive integer k, then a = a′ = (k, 0, . . . , 0,−k)
and we have the following.

Corollary 2.10. Let G and G′ be two graphs whose associated matrices M and M ′ differ by
a reordering of their rows and/or columns. Then FG(k, 0, . . . , 0,−k) is integrally equivalent
to FG′(k, 0, . . . , 0,−k). In particular, FG is integrally equivalent to FG′.

Notably, Corollary 2.10 applies when G′ is the reverse of G. Figure 2 shows three graphs
whose corresponding flow polytopes are proved to be integrally equivalent because of Corol-
lary 2.10.

Another operation on matrices that does not change the polytope BM,b when b has con-
stant entries is the introduction or removal of redundant rows.

Let i and i′ be two rows of an n× d matrix M and let I and I ′ be the subsets of [d] that
are the indices of non-zero entries of M in rows i and i′, respectively. If I ⊆ I ′, we say that
row i is redundant.

Proposition 2.11. Let M be an n × d matrix and let i be a redundant row. If M̂ is the
matrix formed by removing row i from M then BM,k = B

M̂,k

Proof. Viewing BM,k as an intersection of halfspaces, we see that the inequality
∑

i∈I xi ≤ k is
implied by an inequality

∑
i∈I′ xi ≤ k when I ⊆ I ′ because xi ≥ 0 for all i. As a consequence,

removing the former inequality does not change the polytope. �

Removing a row of a column-convex matrix preserves column convexity so we can ask how
this operation impacts the associated graph G and flow polytope FG(k, 0, . . . , 0,−k).
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Proposition 2.12. Let M be a column-convex matrix with associated graph G. Let M̂ be
the matrix resulting by removing row i from M (and subsequently removing any identically

zero columns) and let Ĝ be its associated graph. The graph Ĝ is formed from G by deleting
any multiple copies of (i, i + 1) and then contracting (i, i+ 1). Furthermore, row i of M is
redundant if and only if G does not have simultaneously non-slack edges that originate at
vertex i and non-slack edges that terminate at vertex i+ 1. [This includes multiple edges of
the form (i, i+ 1).]

Proof. That Ĝ is formed from G as described follows directly from Definition 2.2.
If row i is redundant, its non-zero indices are a subset of the non-zero indices of another

row i∗. This implies that all non-slack edges that traverse the vertical line between i and
i+1 must also traverse the vertical line between i∗ and i∗ +1. This implies that G does not
have both non-slack edges that originate at vertex i and non-slack edges that terminate at
vertex i+ 1.

If G does not have both non-slack edges that originate at vertex i and non-slack edges
that terminate at vertex i + 1, then either (a) all edges that originate at or before vertex i
do not terminate before vertex i+2 or (b) all edges that terminate at or after vertex i+1 do
not originate before vertex i− 1. In the former case, the entries of row i in M are a subset
of the entries of row i + 1 in M ; in the latter, they are a subset of the entries of row i− 1.
In both cases row i is redundant. �

A direct consequence of Propositions 2.11 and 2.12 is that certain edge contractions (or
their inverse operations, vertex expansions) yield integrally equivalent flow polytopes. A
special case of the edge contraction result appears in [23, Lemma 2.2].

Corollary 2.13. Let i ∈ [n]. Let G be a graph on n+1 vertices and let Ĝ be the graph formed
by contracting edge (i, i+ 1). The flow polytopes FG(k, 0, . . . , 0,−k) and F

Ĝ
(k, 0, . . . , 0,−k)

are integrally equivalent if and only if G does not have simultaneously non-slack edges that
originate at vertex i and non-slack edges that terminate at vertex i+ 1.

Remark 2.14. The condition onG in Propositions 2.11 and Corollary 2.13 becomes intuitive
in the flow polytope setting. Consider the following subgraph of a graph G that has an edge
e1 entering vertex i+ 1 and an edge e2 leaving vertex i.

i i+ 1

e1 e2

i

e1 e2

The number of integer flows in the two graphs is different because in the contracted graph
(on the right) there can be a unit flow passing through both edges e1 and e2; however, this
does not exist in the original graph (on the left). Similarly, if (i, i+ 1) is a multiple edge in
G, then the removal of copies of (i, i + 1) and its subsequent contraction also changes the
number of integer flows.

Example 2.15. Figure 3 shows a graph G and a graph G′ that is the result of successively
contracting slack edges x1, x2, x8, and x9. Because vertices 2 and 3 are not terminal vertices
of any non-slack edges and vertices 8 and 9 are not originating vertices of any non-slack edges,
the flow polytopes FG(k, 0, . . . , 0,−k) and FG′(k, 0, . . . , 0,−k) are integrally equivalent. The
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1 2 3 4 5 6 7 8 9 10

y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7 x8 x9 3 4 5 6 7 8

y1

y2
y3 y4 y5

y6

y7
x3 x4 x5 x6 x7

Figure 3. These two graphs G and G′ are related by slack edge contractions
that do not change the crossing set, so they have integrally equivalent flow
polytopes FG(k, 0, . . . , 0,−k) and FG′(k, 0, . . . , 0,−k).

associated matrices M and M ′ are

M =




1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1




and M ′ =




1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1



.

The graph G is an example from the family of distance graphs, which are discussed in depth
in Section 6.

Applying a sequence of edge contractions can be useful because it reduces the ambient
dimension of the flow polytope. On the other hand, applying a sequence of vertex expansions
can be useful because the resulting graph can be made to have no multiple edges and also
ensure certain properties of the in-degree of vertices of the resulting graph. Furthermore,
such operations can be used to ensure that the associated matrices have a desired form.

We have seen that there can be a wide variety of graphs whose flow polytopes are integrally
equivalent. This leads to the following open question.

Question 2.16. Characterize all graphs G that have integrally equivalent flow polytopes.

3. The volume of flow polytopes

We now aim to determine the volume of the integrally equivalent polytopes of Theorem
2.7. The starting point is a formula for the volume of flow polytopes as a Kostant partition
function. This result and its generalization (Theorem 3.1) are known as the Lidskii volume
formulas, proved by Baldoni and Vergne [4, Theorem 38] via computations of residues, and
also proved by both Mészáros and Morales [20, Theorem 1.1] and by Kapoor-Mészáros-
Setiabrata [17] using polytope subdivisions.

Let G be a graph on [n + 1]. For i ∈ [n + 1], let ei denote the i-th standard basis vector
in R

n+1. For i ∈ [n], let αi = ei − ei+1 denote the simple roots in the type A root system.
To each edge e = (i, i′) ∈ E(G), we associate the positive root

αe = α(i,i′) = αi + · · ·+ αi′−1.

Let Φ+
G = {αe | e ∈ E(G)} denote the multiset of positive roots associated to G. An a-flow

on the graph G is equivalent to expressing a as a nonnegative linear combination of the
9



positive roots associated to G. When the a-flow is integral, the flow is then equivalent to a
vector partition of the vector a with respect to the set of positive roots Φ+

G. The number
of integral a-flows on G is the Kostant partition function of G evaluated at a, denoted by
KG(a). Note that KG(a) is also the number of integer points in FG(a).

Theorem 3.1 relates the volume of flow polytopes with Kostant partition functions. Given
weak compositions s = (s1, . . . , sn) and t = (t1, . . . , tn) of N we say s dominates t and write

s⊲ t if
∑k

i=1 si ≥
∑k

i=1 ti for every k ≥ 1.

Theorem 3.1 (Baldoni and Vergne [4, Theorem 38]). Let G be a directed graph on the vertex
set [n+1] with m edges, such that the out-degree of each vertex in {1, . . . , n} is at least one.
Let ti = outdegG(i) − 1 for i = 1, . . . , n, and t = (t1, . . . , tn). If a = (a1, . . . , an,−

∑n

i=1 ai)
where a1, . . . , an are nonnegative integers, then the volume of the flow polytope FG(a) is

(4) volFG(a) =
∑

s

(
m− n

s

)
· as11 · · · asnn ·KG(s− t),

where the sum is over weak compositions s = (s1, . . . , sn) of m−n that dominate t and where

KG(s− t) = KG(s1 − t1, . . . , sn − tn, 0).

When a = (1, 0, 0, . . . , 0,−1) the Lidskii volume formula has the following compact form
(after reversing the graph, see [20, Corollary 1.4]).

Theorem 3.2 (Postnikov-Stanley [33], Baldoni and Vergne [4, Theorem 38]). Let G be a
directed graph on the vertex set [n + 1] with m edges, such that the in-degree of each vertex
in {2, . . . , n+ 1} is at least one. Let ui = indegG(i)− 1 for i = 2, . . . , n+ 1. The volume of
the flow polytope FG is

volFG = KG

(
0, u2, . . . , un,−

n∑

i=2

ui

)
,

where KG is the Kostant partition function of G.

In other words, the volume of FG (with unitary net flow a = e1 − en+1) is the number of
integer points of FG with net flow v = (0, u2, . . . , un,−

∑n

i=2 ui).
As a consequence of the Lidskii volume formula and Theorem 2.7, we have the following

result.

Corollary 3.3. Let M be an n×d column-convex matrix and 1 = (1, . . . , 1) ∈ Z
n. We have

volBM,1 = volFG = KG

(
0, u2, . . . , un,−

n∑

i=2

ui

)
.

This gives another motivation for Question 2.16:

Corollary 3.4. Let G and G′ be graphs whose associated matrices differ by row and column
reordering and/or by adding or removing redundant rows. Then

KG(v) = KG′(v′),

where v and v′ are the in-degree vectors of G and G′ respectively.

A special case of this identity is when the graph G is reversed (see [20, Corollary 1.4] and
[24, Section 4]).
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G =

1 2 3 4 5
x1 x2 x3 x4

y1

y2

y3

y4

y5

y6 γ =

0

1

2

53

6

4

Figure 4. The graph G and total cyclic order γ used in Example 4.3.

4. G-cyclic orders

Inspired by the work of Ayyer, Josuat-Vergès, and Ramassamy [3] on total cyclic extensions
of partial cyclic orders, we introduce a new combinatorial object called a G-cyclic order whose
enumeration gives the volume of the flow polytope FG for any spinal graph G. We begin
with the definition of total cyclic orders.

Definition 4.1. A partial cyclic order on a set X is a ternary relation γ ⊆ X3 satisfying
the following conditions:

(a) (x, y, z) ∈ γ implies (y, z, x) ∈ γ (cyclicity),
(b) (x, y, z) ∈ γ implies (z, y, x) /∈ γ (asymmetry),
(c) (x, y, z) ∈ γ and (x, z, u) ∈ γ implies (x, y, u) ∈ γ (transitivity).

A partial cyclic order is called a total cyclic order if in addition it satisfies:

(d) for every x, y, z ∈ X , either (x, y, z) ∈ γ or (z, y, x) ∈ γ (comparability).

A total cyclic order can be represented visually by placing the elements of X on a circle,
as in the drawing of γ in Figure 4. We choose the convention of reading the elements in
clockwise order, so we would read γ as (0, 1, 2, 5, 3, 6, 4). This sequence loops back around
to the start, so that 0 occurs directly after 4. In a partial cyclic order one can also define
the notion of chains. A chain in γ is a sequence (j1, j2, . . . , jk) such that (j1, ji, ji+1) ∈ γ for
all i = 2, . . . , k − 1. A total cyclic order is a partial cyclic order that has a unique maximal
chain. Let C be a collection of chains. We write AC for the set of total cyclic extensions of
the partial cyclic orders induced by C and AC for its cardinality. We refer the reader to [3]
for an extended account on partial and total cyclic orders.

Note that after a permutation of the edge indices, the non-slack edges of a graph G can
be labeled in a canonical order by the lexicographic order on its vertex pairs, as in Figure 4.
We will assume that going forward all graphs have their non-slack edges labeled in canonical
order. Next, in preparation for defining total cyclic orders, compatible with a graph G we
need the following definitions.

Definition 4.2. Consider a graph G with d non-slack edges y1, . . . , yd. For each j ∈ [d],
we say that the index k ∈ [j] is active at j if head(yk) ≤ tail(yj) and say it is inactive at j
otherwise. Denote the set of all active indices at j by ACT(j) and the set of inactive indices
at j by INACT(j). By convention, let 0 ∈ ACT(j) for all j ∈ [d].

Note that ACT(j) and INACT(j) partition {0, 1, . . . , j} and j ∈ INACT(j) for all j ∈ [d].

11



Example 4.3. The graph G in Figure 4 has six non-slack edges. This table shows the set
of active indices ACT(j) and the set of inactive indices INACT(j) for each j = 1, . . . , 6.

j 1 2 3 4 5 6
ACT(j) {0} {0} {0} {0, 1, 3} {0, 1, 3} {0, 1, 2, 3}
INACT(j) {1} {1, 2} {1, 2, 3} {2, 4} {2, 4, 5} {4, 5, 6}

Definition 4.4. Let G be a graph with d non-slack edges and let γ be a total cyclic order
on {0, 1, . . . , d}. For all j ∈ [d], define the set

SKIP(j) = {z ∈ ACT(j) | (j − 1, z, j) ∈ γ}

and define the statistic skip(j) = |SKIP(j)|.

In other words, SKIP(j) is the set of indices that are active at j and lie between j − 1
and j in γ. Continuing Example 4.3, if we consider the total cyclic order γ in Figure 4, we
have calculated SKIP(j) and skip(j) for each j = 1, . . . , 6 and assembled them in the table
below. As one should expect, SKIP(j) ⊆ ACT(j) for all j. Also notice that even though 2
lies between 4 and 5 in γ, 2 is not a member of SKIP(5) because 2 /∈ ACT(j).

j 1 2 3 4 5 6
SKIP(j) ∅ ∅ ∅ ∅ {0, 1} {3}
skip(j) 0 0 0 0 2 1

Definition 4.5. We say that a total cyclic order γ is a G-cyclic order or that it is G-
compatible if for all j ∈ [d]

(5)
∑

k∈INACT(j)

skip(k) < |ACT(j)|.

The total cyclic order γ in Figure 4 is a G-cyclic order because Equation (5) is satisfied
for j = 1, . . . , 6.

Remark 4.6. The intuition behind the skip statistic is that it models the way in which
flow traveling through G is temporarily “captured” when it enters a non-slack edge and
“released” once the edge terminates. In the cyclic order, the indices skipped by j become
captured until j becomes active. Definition 4.5 is a translation of the capacity constraint on
the amount of flow through all edges of an edge cut. These ideas play a central role in the
proof of Thoerem 4.8.

For a total cyclic order γ on {0, 1, . . . , d} define γ|j to be the restriction of γ to the numbers
{0, 1, . . . , j}. There are two subfamilies of G-cyclic orders that are going to be of particular
interest because their cardinality gives the volume of the flow polytope FG according to
Theorem 4.8 below. These families are defined as follows based on where the entry j occurs
in γ|j.

Definition 4.7. We say that γ is an upper G-cyclic order if entry j in γ|j occurs immediately
before an entry that is active at j. We say that γ is a lower G-cyclic order if entry j in γ|j
occurs immediately after j − 1 or after an entry that is active at j.

We denote by A↑
G the set of upper G-cyclic orders and A↑

G its cardinality. We denote by

A↓
G the set of lower G-cyclic orders and A↓

G its cardinality.
12



G =

1 2 3 4 50 0 0 1

0

0

0

1
1

0 γ↑ =

0

4

1

56

2

3

γ↓ =

0

4

1

25

6

3

Figure 5. The bijections in the proof of Theorem 4.8 send the integer flow
on the graph G with net flow v = (0, 0, 2, 1,−3) to the upper G-cyclic order
γ↑ and the lower G-cyclic order γ↓.

The total cyclic order in Figure 4 is neither an upper G-cyclic order nor a lower G-cyclic
order. It is not an upper G-cyclic order because 6 occurs immediately before the inactive
entry 4 in γ|6, and it is not a lower G-cyclic order because 5 occurs immediately after the

inactive entry 2 in γ|5. On the other hand, in Figure 5, γ↑ ∈ A↑
G and γ↓ ∈ A↓

G.
We are now ready to state the main theorem of this section.

Theorem 4.8. For a spinal graph G, the volume of the flow polytope FG is the number of
upper (or lower) G-cyclic orders. In other words,

volFG = A↑
G = A↓

G.

Proof. We prove a bijection between the set of integer flows in FG(0, u2, . . . , un,−
∑n

i=2 ui)

and the set A↑
G of upper G-cyclic orders (and simultaneously with the set A↓

G of lower G-
cyclic orders), where ui = indegG(i) − 1 for i = 2, . . . , n. The result then follows from
Corollary 3.3.

We let G have n slack edges of the form (i, i+1) labeled xi for i = 1, . . . , n, and d non-slack
edges of the form (tail(yj), head(yj)) for j = 1, . . . , d. Given an integer flow (fe)e∈E(G), we
place the numbers 0, 1, . . . , d in a cyclic arrangement γ in the following way.

(1) Place 0 to start the cyclic arrangement γ|0.
(2) Successively obtain γ|j from γ|j−1 by inserting j as follows. Insert j immediately

before an element of ACT(j) so that skip(j) = fyj . (In the case of lower G-cyclic
orders, instead insert j immediately after j − 1 or an element of ACT(j) so that
skip(j) = fyj .)

(3) Define γ = γ|d.

For this to be well defined, we need to ensure for each j that fyj < |ACT(j)|, which equals
one more than the number of non-slack edges that have terminated at or before head(yj)
(because 0 is always active). Numerically, we have

|ACT(j)| = 1 +

head(yj)∑

i=1

(
indeg(i)− 1

)
= 1 +

head(yj)∑

i=1

ui >

head(yj)∑

i=1

ui ≥ fyj ,

where the last inequality is satisfied by any valid flow (fe)e∈E(G).
We now show that the resulting γ is G-compatible. By construction, for all j ∈ [d], j

occurs immediately before (immediately after) an entry that is active at j. Let j∗ be the
largest index of an edge leaving vertex head(yj). Every index that is inactive at j is also
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inactive at j∗. Since skip(j) = fyj , we have
∑

k∈INACT(j)

skip(k) ≤
∑

k∈INACT(j∗)

skip(k) =
∑

k∈INACT(j∗)

fyk .

Consider now the sum of the flow on all edges that have an initial vertex in {1, . . . , head(yj)}
and terminal vertex in {ij + 1, . . . , n+ 1}. These edges are the edge labeled xhead(yj) and all
edges labeled yk for k ∈ INACT(j∗). Since these edges form an edge cut so the sum of the
flow on these edges is the sum of the net flow at vertices 1 through head(yj) so

∑

k∈INACT(j∗)

fyk ≤ fxhead(j)
+

∑

k∈INACT(j∗)

fyk =

head(yj)∑

i=1

ui < |ACT(j)|.

Hence
∑

k∈INACT(j) skip(k) < |ACT(j)| for all j ∈ [d], showing that γ is G-compatible.
Now we describe the inverse construction. Let γ be a G-cyclic order and define the flow

(fe)e∈E(G) as follows. For every non-slack edge yj, define fyj = skip(j). For every slack edge
xi, define

(6) fxi
= fxi−1

+ ui +
∑

k:tail(yk)=i

skip(k)−
∑

k:head(yk)=i

skip(k)

where fx0 = 0. (This notation is used to streamline the calculations; it is not part of the
eventual flow.) Note that Equation (6) is the necessary condition to have conservation of
flow at the vertices i = 1, . . . , n. We need to show that under this definition we have that
xi ≥ 0 and that the conservation of flow is also happening at vertex n + 1, that is, we need
to show that

(7) fxn
−

n∑

i=1

ui +
∑

k:tail(yk)=n+1

skip(k) = 0.

We first apply the transformation obtained by adding Equation (6) for consecutive values
i′ = 1, . . . , i to get the following equivalent definition

(8) fxi
=

i∑

i′=1

ui′ −
∑

k∈INACT(j∗)

skip(k)

where j∗ is the largest index of an edge leaving vertex i. Note that for i = n, Equation (8)
is equivalent to Equation (7). Also, we have that

fxi
=

i∑

i′=1

ui −
∑

k∈INACT(j∗)

skip(k)

=
i∑

i′=1

(
indeg(i)− 1

)
−

∑

k∈INACT(j∗)

skip(k)

= |ACT(j∗)| − 1−
∑

k∈INACT(j∗)

skip(k)

≥ 0,

where the last step follows by applying Equation (5) for j∗.
14



Since in the two constructions above both directions are completely determined by the
values of yj = skip(j) for all j = 1, . . . , d, they provide the desired bijection between the set
of upper (lower) G-cyclic orders and the set of integer flows in FG(0, u2, . . . , un,−

∑n

i=2 ui).
Therefore, we conclude that

volFG = KG(0, u2, . . . , un,−
∑n

i=2ui) = A↑
G = A↓

G. �

Since by Theorem 2.7 the polytope BM,1 is integrally equivalent to the flow polytope FG,
the enumeration of upper (or lower) G-cyclic orders gives the volume of polytopes of this
type.

Corollary 4.9. For a column-convex matrix M and its associated graph G,

volBM,1 = A↑
G = A↓

G.

We remark that although the sets A↑
G and A↓

G have the same cardinality, they are not
the same set. For the graph G in Figure 4 there are 16 upper G-cyclic orders and 16 lower
G-cyclic orders, and so volFG = 16. One of the (0, 0, 2, 1,−3)-integer flows on G and its
corresponding upper and lower G-cyclic orders are given in Figure 5.

5. Consecutive coordinate polytopes

5.1. Flow polytopes for consecutive coordinate polytopes. Since the ordering of the
defining inequalities of a polytope is irrelevant, we can expand the definition of BM,b to
apply to collections of subsets of [d]. For a collection S of subsets of [d] = {1, . . . , d} and a
corresponding collection of integers b = (bI)I∈S ∈ Z

S, we define the polytope

BS,b =

{
(z1, . . . , zd) ∈ R

d
≥0

∣∣∣∣
∑

i∈I

zi ≤ bI for I ∈ S

}
.

When b = 1, we denote BS,b simply by BS. We say that a collection S of subsets is non-
redundant if no two subsets I and I ′ of S satisfy I ⊆ I ′. We say that a set consisting of the
consecutive integers {i, i+ 1, . . . , i′} is an interval and denote it by [i, i′].

Remark 5.1. After giving an ordering on a collection S of intervals, the polytope BS,b is
equivalent to a polytope BM,b where M is a row-convex matrix.

We say that a matrix that is both row convex and column convex is doubly convex.

Lemma 5.2. For a positive integer k and b = (k, k, . . . , k), every polytope BM,b associated
to a row-convex matrix M is also a polytope BM ′,b associated to a doubly convex matrix M ′.

Proof. If two intervals I ′ and I in S satisfy I ′ ⊆ I, we can remove I ′ from S without impacting
BS,b by Proposition 2.11. Successively removing all such intervals yields a collection S ′ of
non-redundant intervals I = [i, i′] that can be ordered lexicographically by the first entry.
Keeping this order in the associated matrix gives a doubly convex matrix M ′. �

For a graph G, two edges (i, j) and (k, l) that satisfy i < k < l < j are said to be nested.
A graph without nested edges is said to be non-nested.

Lemma 5.3. The graph G associated to a doubly convex matrix M is non-nested.

Proof. The lexicographic order in the non-redundant rows of M implies that the graph G
does not contain nested edges. �
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M =




1 1 0 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 1 0
0 0 0 0 1 1 1


 G =

1 2 3 4 5

Figure 6. The matrix M and the graph G associated to the collection of
intervals S = {[1, 2], [2, 4], [3, 6], [5, 7]} ⊆ [7].

Figure 6 shows an example of a doubly convex matrix and its corresponding non-nested
graph.

When S is a collection of intervals, BS is a consecutive coordinate polytope, which is the
main object of study in [3].

Proposition 5.4. Every consecutive coordinate polytope BS is integrally equivalent to a flow
polytope FG for a non-nested graph G.

Proof. By Lemma 5.2, BS is integrally equivalent to BM,1 for a doubly convex matrix M .
By Theorem 2.7, BM,1 is integrally equivalent to FG for its associated graph G, which is
non-nested by Lemma 5.3. �

Next, we give a converse of this result.

Proposition 5.5. Every flow polytope FG of a non-nested graph G is integrally equivalent
to a consecutive coordinate polytope BS .

Proof. Recall that in the integral equivalence of Theorem 2.7, there is a defining equation of
BS of the form

(9)
∑

i∈I

yi = 1

for every slack edge (r, r + 1) in G where I is the set of indices of the edges that start at or
before r and end at or after r + 1.

Suppose for the sake of contradiction that Equation (9) satisfies j < k < l with j, l ∈ I and
k 6∈ I. This would imply that head(yk) ≤ r < tail(yj). Since j < k, the canonical order on the
edges would imply that tail(yj) < head(yk) so yk would be nested in yj , a contradiction. �

5.2. G-cyclic orders of non-nested graphs. We show that when G is a non-nested graph,
the upper and lower G-cyclic orders coincide and are the same as total cyclic extensions of
partial cyclic orders. We first show that all elements that are active at j are smaller than
all elements that are inactive at j for all j ∈ [d].

Proposition 5.6. Let G be a non-nested graph with d non-slack edges. Then for all j ∈ [d]
and for all a ∈ ACT(j) and b ∈ INACT(j), we have that a < b. As a consequence, the set

{maxACT(j)} ∪ INACT(j)

is the interval [maxACT(j), j] for all j ∈ [d].

Proof. Suppose that for some j it happens that a ∈ ACT(j) and b ∈ INACT(j) with b < a.
By the canonical labeling of the non-slack edges of G, b < a means that tail(yb) ≤ tail(ya).
Since a ∈ ACT(j) and b ∈ INACT(j) we must have that head(ya) ≤ j < head(yb). The
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canonical labeling of the non-slack edges then implies that tail(yb) < tail(ya), which means
that yb is nested inside ya. This contradicts that G is non-nested. �

Proposition 5.7. For a non-nested graph G, the sets A↑
G and A↓

G are equal.

Proof. Let G be a non-nested graph with an integer flow (fe)e∈E(G). Consider the algorithm
in the proof of Theorem 4.8 that constructs the upper and lover G-cyclic orders γ↑ and γ↓
from the flow. In Step (2) of the algorithm, j is inserted after a prescribed number of elements
active at j. Since G is non-nested, Proposition 5.6 implies that all inactive elements come
after all active elements, so the insertion of j occurs in the same place in both the upper and
lower G-cyclic order. Since the two bijections give the same G-cyclic orders, A↑

G and A↓
G are

equal. �

Because of this, when G is a non-nested graph, we will denote the set A↑
G = A↓

G by AG.

Proposition 5.8. Let G be a non-nested graph with d non-slack edges. A total cyclic order
γ is G-compatible if and only if it is a total cyclic extension of the partial cyclic order whose
chains are (maxACT(j),maxACT(j) + 1, . . . , j − 1, j) for j ∈ [d].

Proof. First suppose γ is G-compatible. We will use induction to show that for every j ∈ [d],
either maxACT(j) = j − 1 or (maxACT(j),maxACT(j) + 1, . . . , j − 1, j) is a chain in γ.

The base case when j = 1 is true because maxACT(1) = 0 = 1 − 1. The inductive
hypothesis for j − 1 along with Proposition 5.6 implies either:

(1) maxACT(j − 1) = j − 2 and INACT(j − 1) = {j − 1}, or
(2) (maxACT(j − 1),maxACT(j − 1) + 1, . . . , j − 2, j − 1) is a chain in γ and

INACT(j − 1) = [maxACT(j − 1) + 1, j − 1].

In both cases, the inequality in Equation (5) can then be rewritten as the equality

uj−1 +
∑

k∈INACT(j−1)

skip(k) = |ACT(j − 1)| − 1,(10)

where
uj−1 =

∣∣{a ∈ ACT(j − 1) | (j − 1, a,maxACT(j − 1)) ∈ γ
}∣∣.

For the inductive step, suppose maxACT(j) 6= j−1. Let I = INACT(j−1)∩ACT(j); that is,
I is the set of elements inactive at j−1 that are active at j. Therefore ACT(j) = ACT(j−1)∪I
and the number N of a ∈ ACT(j) such that (j − 1, a,maxACT(j)) ∈ γ is given by

N = uj−1 +
∑

k∈I

skip(k) + |I|.

Following Equation (10) we have

N = |ACT(j − 1)| − 1−
∑

k∈INACT(j−1)\I

skip(k) + |I|

= |ACT(j)| − 1 +
∑

k∈INACT(j)\{j}

skip(k)

≥ skip(j).

If (maxACT(j), j, j − 1) were a relation in γ we would have that skip(j) ≥ N + 1
which is a contradiction. Hence (maxACT(j), j − 1, j) is a relation and by transitivity
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(maxACT(j),maxACT(j) + 1, . . . , j − 1, j) is a chain in γ. Therefore if γ is G-compatible,
it must be an extension of the partial cyclic order defined by the set of chains (maxACT(j),
maxACT(j) + 1, . . . , j − 1, j) for all j ∈ [d].

For the converse, suppose γ is a a total cyclic extension of the partial cyclic order whose
chains are (maxACT(j),maxACT(j) + 1, . . . , j − 1, j) for j ∈ [d]. Again by induction on j
and a similar argument using Proposition 5.6 we see that Equation (5) is satisfied for every
j ∈ [d] and hence γ is G-compatible. �

Example 5.9. In Figure 6, we can read from G the value of maxACT(j) for every j by
determining the largest edge index that lands on or before edge yj starts. This gives the
following data:

j 1 2 3 4 5 6 7
maxACT(j) 0 0 1 1 2 2 4

The chains specified by Proposition 5.8 are (0, 1), (0, 1, 2), (1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 5),
(2, 3, 4, 5, 6), and (4, 5, 6, 7). Therefore the G-cyclic orders are the ones that are total
cyclic extensions of the partial cyclic orders determined by the chains (0, 1, 2), (1, 2, 3, 4),
(2, 3, 4, 5, 6), and (4, 5, 6, 7).

Recall that if C is a set of chains then AC is the set of total cyclic extensions of the
partial cyclic order whose chains are C. Interpreting Proposition 5.8 in terms of collections
of intervals we have the following.

Proposition 5.10. Let S be a collection of intervals and let G be its associated graph. Let
C be the set of chains

{
(i− 1, i, . . . , i′) | [i, i′] ∈ S

}
. Then AG = AC.

Proof. Order S in lexicographic order. If [i, i′] is the r-th interval, then row r of the associated
matrix M has non-zero entries in columns i through i′. This implies that in the associated
graph G, edge yi−1 is the last non-slack edge that terminates at or before vertex r and the
set of edges yi through yi′ all terminate after vertex r. Applying Proposition 5.8, we notice
that every vertex of G contributes a unique maximal chain of the form (i− 1, i, . . . , i′) that
a G-cyclic order must contain. �

As a consequence of Proposition 5.10, we recover the following result of Ayyer, Josuat-
Vergès, and Ramassamy.

Corollary 5.11 ([3, Theorem 2.3]). Let S be a collection of intervals and let C be the set
of chains

{
(i− 1, i, . . . , i′) | [i, i′] ∈ S

}
. Then volBS = AC.

5.3. Counting non-redundant collections of intervals and graphs.

The well-known sequence of Catalan numbers Cat(n) := 1
n+1

(
2n
n

)
makes an appearance

when enumerating non-redundant collections of intervals in [d].

Proposition 5.12. There are Cat(d) non-redundant collections of intervals covering [d].

Proof. Such collections S are in bijection with antichains in the root poset of type Ad−1,
S 7→ A where A = {ei − ei′ | [i, i

′] ∈ S for i 6= i′}. These antichains are counted by the
Catalan number Cat(d), as shown, for example, in [2, Corollary 1.4] and [27, Remark 2]. �

18



For a graph G on vertex set [n+ 1] with d non-slack edges ordered canonically, define the
edge cut set {I1, . . . , In} of subsets of [d] where Ir is the set of indices of the non-slack edges
that start at or before vertex r and end at or after r + 1. We say that G is non-redundant
if the edge cut set is non-redundant.

Proposition 5.13. There is a bijection between non-redundant collections of n intervals in
[d] and non-redundant non-nested graphs on [n + 1] with d non-slack edges.

Proof. By the argument of Lemma 5.2, to every non-redundant collection S of intervals in [d]
we can bijectively associate a unique doubly convex matrixM with d columns whose rows are
non-redundant and ordered in the canonical order. Using Definition 2.2 we can injectively
associate to such matrix M a graph G, that is non-nested by Lemma 5.3, with d non-slack
edges. Under this map the non-redundancy of S translates into the non-redundancy of G.
Following the arguments of the proof of Proposition 5.5 we see that from a non-redundant
non-nested graph G we can recover the non-redundant collection of intervals. The resultant
bijection S 7→ G is such that the graph G is the unique spinal graph with vertices [|S|+ 1]
and non-slack edges appears in all the intervals from the ij-th interval to i′j-th interval,
considering intervals in their canonical order. �

Corollary 5.14. There are Cat(d) graphs with d non-slack edges that are both non-nested
and non-redundant.

Proof. The result follows from Proposition 5.12 and Proposition 5.13. �

Example 5.15. For d = 3 the Cat(3) = 5 non-redundant collections of intervals S are

{{1}, {2}, {3}} {[1, 2], {3}} {[1, 3]} {{1}, [2, 3]} {[1, 2], [2, 3]}

which correspond to these antichains in the root poset of type A2:

∅ {e1 − e2} {e1 − e3} {e2 − e3} {e1 − e2, e2 − e3}

and to the following non-nested non-redundant graphs:

y1 y2 y3 y1

y2
y3 y1

y2

y3

y1 y2

y3
y1 y3

y2

This leads to the following open question.

Question 5.16. Since the family of non-redundant collections of intervals has an inherent
structure (for instance, given by ordering the antichains by inclusion), does any property of
the flow polytopes of the graphs corresponding to these collections behave well under this
structure?

6. Flow polytopes on distance graphs

We now focus on the study of a family of flow polytopes related to the combinatorics of
Euler numbers and some of their generalizations.

For positive integers k and d, define the distance graph G(k, d + k) to be the graph with
vertex set [d+ k] and 2d+ k − 1 edges

{(1, 2), (2, 3), . . . , (d+ k − 1, d+ k)} ∪ {(1, k + 1), (2, k + 2), . . . , (d, d+ k)} .
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G(1, 4)

1 2 3 4

G(2, 5)

1 2 3 4 5

G(3, 10)

1 2 3 4 5 6 7 8 9 10

Figure 7. Examples of distance graphs G(k, d+ k).

See Figure 7. The graphs of the form G(2, d+ 2) are called zigzag graphs because their flow
polytopes with unit flow are integrally equivalent to the order and chain polytopes on the
zigzag poset.

6.1. Vertices of flow polytopes of distance graphs. We use the characterization of the
vertices of flow polytopes in Proposition 2.6 to enumerate the vertices of FG(k,d+k). For the
special cases when k equals 1 or 2, the number of vertices of FG(1,d+1) is 2

d and the number
of vertices of FG(2,d+2) is the Fibonacci number Fd+2. These formulas can be seen as part of
the following general result.

Proposition 6.1. For positive integers d and k, the number vk,d of vertices of FG(k,d+k)

satisfies the recurrence vk,d = vk,d−1 + vk,d−k for d > k with initial values vk,d = d + 1 for
d = 1, . . . , k and has generating function

∑

d≥1

vk,dx
d =

x(2 + x+ x2 + · · ·+ xk−1)

1− x− xk
.

Proof. By Proposition 2.6, the vertices of the polytope FG(k,d+k) correspond to paths from
vertex 1 to vertex d+ k in G(k, d+ k). For d = 1, . . . , k a path from 1 to d+ k of G(k, d+ k)
is either the path 1 → 2 → · · · → d + k or it has exactly one non-slack edge out of the d
such edges. Thus vk,d = d+1. For d > k, a path from vertex 1 to d+ k is either of the form
P ′ ∪ (d+ k − 1, d+ k) where P ′ is a path from 1 to d+ k − 1 or P ′′ ∪ (d, d+ k) where P ′′ is
a path from 1 to d, giving the desired recurrence for the number vk,d. The generating series
follows readily from the linear recurrence and the initial conditions. �

6.2. Volumes of flow polytopes of distance graphs and k-Euler numbers. It was
shown in [6, Proposition 3.5] that the volume of FG(2,d+2) is the d-th Euler number Ed

Recall that S(k, d) denotes the set {[1, k], [2, k+1], . . . , [d−k+1, d]} of intervals of length k.
Let S ′ be the collection S(k, d) together with the redundant intervals [1, i] and [d−k+1−i, d]
for i = 1, . . . , k − 1. After ordering the intervals in S ′ lexicographically, G(k, d + k) is the
graph associated to S ′ by Definition 2.2. By an application of Theorem 2.7, the polytopes
BS′ , BS(k,d), and FG(k,d+k) are all integrally equivalent.

We use the simplified notation Ak,d for the set AS(k,d) of extensions of the partial cyclic
order determined by S(k, d) and Ak,d for its cardinality AS(k,d). The next proposition follows
from Proposition 5.10.

Proposition 6.2. For any integers d and k ≥ 1 then

volFG(k,d+k) = volBS(k,d) = Ak,d.
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k\d 1 2 3 4 5 6 7 8 9 10
1 1 2 6 24 120 720 5040 40320 362880 3628800 A000142
2 1 1 2 5 16 61 272 1385 7936 50521 A000111
3 1 1 1 2 5 14 47 182 786 3774 A096402
4 1 1 1 1 2 5 14 42 146 574

Table 1. Initial terms of the k-Euler numbers Ak,d.

As a generalization of the case k = 2, we see that the numbers A2,d can be viewed as
analogue of the Euler numbers [15, A000111]. We then call Ak,d the k-Euler numbers.1 See
Table 1.

The k-Euler number Ak,d can be interpreted as a number of integer flows on the distance
graph G(k, d).

Corollary 6.3. Let k and d be positive integers with d > k. We have that

Ak,d = KG(k,d)(1
d−1,−d+ 1).

Proof. By Proposition 6.2 and Theorem 3.2 we have that

Ak,d = KG(k,d+k)(0
k, 1d−1,−d+ 1).

The net flow on the first k vertices of G(k, d+ k) is zero for the integer flows counted on the
right hand side. Thus the support of such integer flows is on the subgraph of G(k, d+ k) of
the last d vertices, which is isomorphic to G(k, d), with netflow (1d−1,−d + 1). Conversely,
every integer flow of G(k, d) with netflow (1d−1,−d+ 1) can be extended to an integer flow
of G(k, d+ k) with netflow (0k, 1d−1,−d+ 1). Thus we have the identity

KG(k,d+k)(0
k, 1d−1,−d+ 1) = KG(k,d)(1

d−1,−d+ 1),

which gives the desired result. �

6.3. k-Entringer numbers. By partitioning the set of integer flows on G(k, d) with netflow
v = (1d−1,−d+1) based on the flow on each of the edges in the edge cut separating the first
d+ 1 vertices from the last k − 1 vertices, we provide a new combinatorial interpretation of
a refinement of the k-Euler numbers first found by Ayyer, Josuat-Vergès, and Ramassamy
[3].

The refinement is indexed by the vectors

T k
N = {(s1, . . . , sk) ∈ Z

k
≥0 | s1 + · · ·+ sk = N},

where N = d − k + 1 ≥ 0. Given s = (s1, . . . , sk) ∈ T k
N , define Es to be the set of integral

v-flows on G(k, d) whose flow on the slack edge (d − k + 1, d − k + 2) is s1 and whose flow
on the last k − 1 non-slack edges from right to left are s2, . . . , sk. This is illustrated on the
left side of Figure 8. Define the k-Entringer number indexed by s ∈ T k

N to be the number
Es = |Es| of such integer flows. For a fixed k and N , the numbers Es for s ∈ T k

N can be
arranged into a (k − 1)-dimensional array in the shape of a simplex, as in Figure 10.

1These numbers are different from other generalizations of Euler numbers such as [35, Exercise 4.3.6] or
[15, A131454].
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s4 s3 s2

s1

1 1 1 1 1 1 1 1 1 1 1 −11 1 1 1 1 1 1−s4
1−s3

1−s2
1−s1

Figure 8. The two integer flow interpretations of E(s1,s2,s3,s4) in the graphs
G(4, 12) and G(4, 9) where (s1, s2, s3, s4) ∈ T 4

9 , as described in Proposition 6.5.

When k = 2 the number E(s1,N−s1) coincides with the (classical) Entringer number EN,s1.
When k = 1, there is no refinement and A1,d = E(d) = d!. This agrees with the observation
that the consecutive coordinate polytope BC(1,d) is the d-hypercube.

The sets {Es | s ∈ T k
N} partition the set of integral v-flows on the distance graph G(k, d),

so it follows that the k-Euler number Ak,d is the sum of k-Entringer numbers:

(11) Ak,d =
∑

s∈T k
N

Es.

Remark 6.4. In the language of [3], the k-Entringer number a(i1,...,ik) is defined as the
number of total cyclic orders in Ak,d such that there are ij − 1 numbers between d − k + j
and d−k+1+j in the total cyclic order, for j = 1, . . . , k−1. Via the bijection in Theorem 4.8,
this is precisely the number of integer flows on G(k, d) with net flow v = (1d−1,−d+1) whose
flow on the last k − 1 non-slack edges from left to right are i1 − 1, i2 − 1, . . . , ik−1 − 1. In
other words,

E(s1,s2,...,sk) = a(sk+1,...,s2+1,s1+1),

from which we see that Equation (11) is equivalent to Equation (7.3) in [3].

Next, we show that the k-Entringer numbers can also be viewed as a value of a Kostant
partition function. This viewpoint becomes useful when we show Section 6.5 that the num-
bers Es are log-concave along root directions.

Proposition 6.5. Let k ≥ 2 and N = d− k + 1 ≥ 0. For s ∈ T k
N ,

Es = KG(k,N)(1
d−2k+1, 1− sk, . . . , 1− s2, 1− s1).

Proof. The restriction of the graph G(k, d) to its first d − k + 1 vertices gives a bijection
between the set of integer flows in Es on G(k, d) with net flow vector (1d−1,−d+ 1) and the

set Ẽs of integer flows on G(k, d−k+1) with net flow vector (1d−2k+1, 1−sk, . . . , 1−s2, 1−s1)
since the flow on every edge of G(k, d) not in G(k, d− k+1) is fixed by the choice of s. (See
Figure 8.) �

We remark that when s1 = 0, then Es = 0 because of the bijection in Proposition 6.5 and
the fact that the net flow into vertex d− k + 1 in the original graph G(k, d) was 1.

6.4. The boustrophedon recursion for k-Entringer numbers. By further exploiting
the recursive nature of distance graphs, we next show that the k-Entringer numbers can
be computed recursively on k levels. In other words, each k-Entringer number Es where∑k

i=1 si = N can be expressed as a partial sum of k-Entringer numbers indexed by entries
in each of the simplices T k

N , T
k
N−1, . . . , T

k
N−k+1.
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Theorem 6.6 (The k-boustrophedon recursion). Let k ≥ 2, N = d − k + 1 ≥ 1, and
(s1, . . . , sk) ∈ T k

N . For j = 1, . . . , k − 1, we have

E(s1,...,sk) =
∑

u

E(uj+1+sj+1,sj+2,...,sk,u1,u2,...,uj),

a sum over weak compositions u = (u1, . . . , uj+1) � N − j −
∑k

i=j+1 si that satisfies the
inequalities u1 + · · ·+ uh ≤ s1 + · · ·+ sh − h for h = 1, . . . , j. When N = 0, E(0,...,0) = 1.

Proof. Interpret Es as the number of integer flows on G(k,N) with net flow

v = (1d−2k+1, 1− sk, . . . , 1− s1).

In the case N = 0 so that d = k − 1, then

E(0,...,0) = KG(k,0)(1, . . . , 1,−k + 2) = 1

because G(k, 0) is the empty graph and there is only one integer flow.
Now let N > 0 so that d ≥ k, and fix j ∈ [k−1]. Let us further refine Es according to the

flows on the j + 1 edges in the vertical edge cut between the vertices N − j and N − j + 1
in G(k,N). Let Ẽs be defined as in the bijection in Proposition 6.5. Let Ẽs(u1, . . . , uj+1)

denote the subset of integer flows in Ẽs whose flows on the last j non-slack edges of G(k,N)
are u1, . . . , uj from right to left, and is uj+1 on the slack edge between vertices N − j and
N − j + 1. (See Figure 9 for an illustration in the case k = 4, d = 5, j = 2.) By examining
the vertical edge cut between vertices N − j and N − j + 1, we see that the nonnegative
integers u1, . . . , uj satisfy the inequalities

u1 + · · ·+ uh ≤ s1 + · · ·+ sh − h

for h = 1, . . . , j. In addition,

u1 + · · ·+ uj+1 = s1 + · · ·+ sj − j = N − j − (sj+1 + · · ·+ sk).

Let Es(u1, . . . , uj+1) be the cardinality of Ẽs(u1, . . . , uj+1). The sets Ẽs(u1, . . . , uj+1) partition

Ẽs, so

Es =
∑

u

Es(u1, . . . , uj+1).

As in the proof of Proposition 6.5, the restriction of the graph G(k,N) to the graph

G(k,N−j) gives a bijection between integer flows in Ẽs(u1, . . . , uj+1) on G(k,N) and integer
flows on G(k,N − j) with net flow

(1d−2k+1−j, 1− uj, . . . , 1− u1, 1− sk, . . . , 1− sj+2, 1− sj+1 − uj+1)

since the flow on each edge ofG(k,N) not inG(k,N−j) is fixed by the choice of (u1, . . . , uj+1).
Thus we have shown that

Es(u1, . . . , uj+1) = KG(k,N−j)(1
d−2k+1−j, 1−uj, . . . , 1−u1, 1−sk, . . . , 1−sj+2, 1−sj+1−uj+1),

which by Proposition 6.5 is counted by E(uj+1+sj+1,uj+2,...,sk,u1,u2,...,uj), as desired. �

The following corollary is the special case of the k-boustrophedon recursion when j = 1. It
recovers the boustrophedon recurrence of Ayyer, Josuat-Vergès and Ramassamy [3, Theorem
7.4]. See Figure 10 for an illustration. Alternatively, Theorem 6.6 can be derived by applying
Corollary 6.7 j times.
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u1u2

u3

1 1 1 1 1 1 1−s4
1−s3

1−s2
1−s1 1 1 1 1 1−u2

1−u1
1−s4

1−s3−u3

Figure 9. An example of the two interpretations of E(s1,s2,s3,s4)(u1, u2) in the
graphs G(4, 10) and G(4, 8) where (s1, s2, s3, s4) ∈ T 4

10, as described in Theo-
rem 6.6.

E(0,2,1)E(0,3,0) E(0,1,2) E(0,0,3)

E(1,2,0) E(1,1,1) E(1,0,2)

E(2,1,0) E(2,0,1)

E(3,0,0)

E(0,2,0) E(0,1,1) E(0,0,2)

E(1,1,0) E(1,0,1)

E(2,0,0)

0

1

1

1 1

1

0 0

0

0

1

1

000

0

Figure 10. Boustrophedon recursion for k-Entringer numbers.

Corollary 6.7 ([3, Theorem 7.4]). Let k ≥ 2, N = d − k + 1 ≥ 1, and (s1, . . . , sk) ∈ T k
N .

Then

E(s1,...,sk) =





1 if (s1, . . . , sk) = (0, . . . , 0),∑s1−1
t=0 E(s2+t,s3,...,sk,s1−t−1), if s1 > 0,

0, otherwise.

Corollary 6.8. When s = (d, 0, . . . , 0), the k-Entringer number Es is also a k-Euler number:

E(d,0,...,0) =
∑

s∈T k
N

Es = Ak,d,

where N = d− k + 1. Thus the k-Entringer number E(d,0,...,0) is also the volume of the flow
polytope FG(k,d+k).

Proof. Applying Theorem 6.6 with s = (d, 0, . . . , 0) and j = k − 1 then

E(d,0,...,0) =
∑

u

E(uk+0,u1,...,uk−1)

is a sum over all compositions u = (uk, u1, . . . , uk−1) such that u1+ · · ·+uk = d−k+1 = N .
By Equation (11) we have that Ak,d =

∑
s∈T k

N
Es. Putting these equations together gives the

desired result. �
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Example 6.9. Let k = 3 and N = d−k+1. We present the 3-Entringer numbers of s ∈ T 3
N

for N = 3, 4, 5:

E(0,3,0) E(0,2,1) E(0,1,2) E(0,0,3)

E(1,2,0) E(1,1,1) E(1,0,2)

E(2,1,0) E(2,0,1)

E(3,0,0)

0 0 0 0

1 1 0

1 1

1

E(0,4,0) E(0,3,1) E(0,2,2) E(0,1,3) E(0,0,4)

E(1,3,0) E(1,2,1) E(1,1,2) E(1,0,3)

E(2,2,0) E(2,1,1) E(2,0,2)

E(3,1,0) E(3,0,1)

E(4,0,0)

0 0 0 0 0

1 1 1 0

2 2 1

2 2

2

E(0,5,0) E(0,4,1) E(0,3,2) E(0,2,3) E(0,1,4) E(0,0,5)

E(1,4,0) E(1,3,1) E(1,2,2) E(1,1,3) E(1,0,4)

E(2,3,0) E(2,2,1) E(2,1,2) E(2,0,3)

E(3,2,0) E(3,1,1) E(3,0,2)

E(4,1,0) E(4,0,1)

E(5,0,0)

0 0 0 0 0 0

2 2 2 1 0

4 4 3 1

5 5 3

5 5

5

By Corollary 6.3, for s = (s1, s2, s3) ∈ T 3
N , the 3-Entringer numbers Es enumerate integral

(1d−1,−d+1)-flows on G(3, d) whose flows on the last two non-slack edges (d− 1, d+2) and
(d, d+ 3) are s3 and s2, and whose flow on the slack edge (d− 2, d− 1) is s1.

By Theorem 6.6, we can express any Entringer number indexed by s ∈ T 3
5 as partial sums

of 3-Entringer numbers indexed by entries T 3
4 and by T 3

3 . For example,

5 = E(5,0,0) =
∑

s∈T 3
4 :s2=0

Es =
∑

t∈T 3
3

Et.

We see that E(5,0,0) = 5 is simultaneously

(i) the 3-Entringer number indexed by the top entry of T 3
5 ,

(ii) the sum of 3-Entringer numbers indexed by entries along the right edge of T 3
4 ,

(iii) and the sum of 3-Entringer numbers indexed by all the entries of T 3
3 .

This verifies the result of Equation (11) which states that k-Euler numbers are refined by
k-Entringer numbers

volFG(3,8) = A3,5 =
∑

s∈T 3
3

Es = 5.

6.5. Log-concavity of the k-Entringer numbers. We can use the machinery of flow
polytopes to study log-concavity properties of the k-Entringer numbers. In the case of
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k = 2, Benedetti et al. [6, Corollary 7.6] already proved that the sequence E(0,N), . . . , E(N,N)

of Entringer numbers is log-concave.
The following log-concavity result follows from the general Lidskii volume formula, Theo-

rem 3.1. In this formula, the numbers KG(s− t) are mixed volumes (see [4, Section 3.4] for
example). The following result is then a consequence of the Aleksandrov–Fenchel inequali-
ties [1, 11, 12]. Alternatively, the result also follows from work of Huh et al. [14, Proposition
11] on Lorentzian polynomials. See Section 6.7.

Lemma 6.10 (Huh et al. [14, Proposition 11]). The numbers KG(s− t) appearing in Equa-
tion (4) are log-concave along root directions. That is,

KG(s− t)2 ≥ KG(s− t− ei + ej) ·KG(s− t+ ei − ej)

for each 1 ≤ i < j ≤ n.

Theorem 6.11. Let k ≥ 2 and N = d − k + 1 ≥ 0. Given s = (s1, . . . , sk) ∈ T k
N , then the

numbers Es are log-concave along root directions. That is,

E2
s
≥ Es−ei+ej

· Es+ei−ej
.

Proof. We show that Es equals KG(s − t) on the right side of Equation (4) for a certain
graph G and net flow a.

The flow polytope of the graph G(k, n− k + 2) has dimension d = n− 2k + 2. Applying
Lemma 3.1 to FG(k,d+1)(1

k, 0d−k,−k), we have that t = (1d−k+1, 0k−1) and

(12) volFG(k,d+1)(1
k, 0d−k,−k) =

∑

s

(
N

s

)
· 1 ·KG(k,d+1)(s− t),

where the zeros in the net flow a = (1k, 0d−k,−k) restrict the sum to be over compositions
s = (s1, . . . , sk) of N . Thus the Kostant partition functions appearing on the RHS are

KG(k,d+1)(s− t) = KG(k,d+1)(s1 − 1, . . . , sk − 1, (−1)d−2k+1, 0k).

By the same argument as in the proof of Corollary 6.3, since the net flow on the last k
vertices of G(k, d + 1) is zero for the integer flows counted on the right hand side we have
that

KG(k,d+1)(s1 − 1, . . . , sk − 1, (−1)d−2k+1, 0k) = KG(k,d−k+1)(s1 − 1, . . . , sk − 1, (−1)d−2k+1)

A visualization of this operation is given in Figure 11. Since reversing the direction of the
edges of the graph G(k, d − k + 1) yields a graph isomorphic to G(k, d − k + 1), then by
reversing the flow, the Kostant partition remains unchanged [20, Corollary 2.4]. We conclude
that

KG(k,d−k+1)(s1 − 1, . . . , sk − 1, (−1)d−2k+1) = KG(k,d−k+1)(1
d−2k+1, 1− sk, . . . , 1− s1).

By Proposition 6.5 the number of integer flows on the right hand side above are counted by
the k-Entringer numbers. We have shown that

(13) KG(k,d+1)(s− t) = Es;

the desired log-concavity for Es follows from Lemma 6.10. �
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1 1 1 1 0 0 0 0 0 0 0 0 −4 s1−
1
s2−

1
s3−

1
s4−

1 1 1 1 1 1 0 0 0 0

s1−
1
s2−

1
s3−

1
s4−

1 1 1 1 1 1

Figure 11. Left: The graph G(4, 13) with netflow (14, 09,−4) is an example
of the type of flow polytope used in the proof of Theorem 6.11. Right: The
integer flows (mixed volumes) in the Lidskii formula for the volume of such
polytope on the graph G(4, 13) and its subgraph G(4, 9) correspond to one of
the interpretations of E(s1,s2,s3,s4) after reversing the graph and considering the
subgraph of vertices with nonzero flow (compare with Figure 8).

0 0 0 0 0 0

02 2 2 1

4

5

4 3 1

5 3

5 5

5

e1 − e2

e2 − e3

e1 − e3

32 = E2
(2,1,2) ≥ E(1,2,2)E(3,0,2) = 2 · 3

32 = E2
(2,1,2) ≥ E(3,1,1)E(1,1,3) = 5 · 1

32 = E2
(2,1,2) ≥ E(2,2,1)E(2,0,3) = 4 · 1

Figure 12. Example of the log-concavity of the k-Entringer numbers along
root directions.

Example 6.12. Figure 12 highlights the log-concavity along root directions for the 3-
Entringer numbers that are indexed by compositions of 5. For each root direction e1 − e2,
e1 − e3, and e2 − e3, the two 3-Entringer numbers on either side of E(2,1,2) in that direction
multiply to no more than E2

(2,1,2).

6.6. k-Springer numbers. In the proof of Theorem 6.11 we studied the volume of the
flow polytope of G(k, d + 1) with netflow (1k, 0d−k,−k). Moreover, in [6, Theorem 6.11],
Benedetti et al. showed that in the case k = 2 this volume equals the Springer number Sn−1

[15, A001586]. This motivates the definition of a generalization of Springer numbers that
are a multinomial transform of the numbers Es.

Definition 6.13 (k-Springer numbers). For k ≥ 1 and N = d− k + 1 ≥ 0, let

Sk,d = volFG(k,d+1)(1
k, 0d−k,−k).

See Table 2 for some values of this sequence.
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k\d 1 2 3 4 5 6 7 8 9 10
1 1 2 6 24 120 720 5040 40320 362880 3628800 A000142
2 1 1 3 11 57 361 2763 24611 250737 2873041 A001586
3 1 1 1 3 16 88 625 5527 55760 640540
4 1 1 1 1 3 16 125 927 8357 91735

Table 2. Table of the k-Springer numbers Sk,d.

Proposition 6.14. Let k ≥ 1 and N = d− k + 1 ≥ 0. We have that

Sk,d =
∑

s∈T k
N

(
d− k + 1

s

)
Es.

Proof. By Equation (12) and the definition of Sk,d, we have

Sk,d =
∑

s∈T k
N

(
d− k + 1

s

)
·KG(k,d+1)(s− t).

The result then follows by applying Equation (13) to the LHS above. �

6.7. A Lorentzian polynomial related to k-Entringer numbers. In Theorem 6.11 we
showed that the k-Entringer numbers satisfy certain log-concavity relations. This is part of a
more general story: Brändén and Huh [25] defined Lorentzian polynomials as a generalization
of volume polynomials in algebraic geometry and stable polynomials in optimization. The
latter are a generalization of real-rooted polynomials in a multivarite setting introduced by
Borcea and Brändén in [16]. The following result is implicit in [24, Section 2] and it follows
from the fact that volume polynomials of Minkowski sums of convex bodies are Lorentzian
[25, Theorem 9.1] and that the flow polytope FG(a) is a Minkowski sum of flow poytopes [4,
Section 3.4].

Lemma 6.15. Let G be a directed graph on the vertex set [n+1] with m edges, such that the
out-degree of each vertex in [n] is at least one. The polynomial volFG(a) from Equation (4)
is Lorentzian in the variables a1, . . . , an.

For k ≥ 1 and N = d− k + 1 ≥ 0, let Ak,d(x1, . . . , xk) be the polynomial

Ak,d(x1, . . . , xk) :=
∑

s∈T k
N

Es · x
s1
1 · · ·xsk

k .

The normalization operator N on R[x1, . . . , xk] acts by sending xs1
1 · · ·xsk

k 7→
x
s1
1

s1!
· · ·

x
sk
k

sk!
. We

collect some straightforward identities of the polynomials Ak,d(x).

Proposition 6.16. For k ≥ 1 and d− k + 1 ≥ 0, we have that

(a) Ak,d(1, . . . , 1) = Ak,d,
(b) (d− k + 1)! · N(Ak,d(1, . . . , 1)) = Sk,d,
(c) for nonnegative integers x1, . . . , xk

(d− k + 1)! · N(Ak,d(x1, . . . , xn)) = volFG(k,d+1)(x1, . . . , xk, 0
d−k,−

∑k

i=1 xi).
28

https://oeis.org/A000142
https://oeis.org/A001586


Proof. Part (a) follows from the definition of Ak,d(x) and Equation (11). Part (b) follows
from Proposition 6.14. Lastly, part (c) follows from the Lidskii formula Theorem 3.1 and
Equation (13). �

Corollary 6.17. Let k ≥ 1 and d− k + 1 ≥ 0. The quantity N(Ak,d(x)) is Lorentzian.

Proof. This follows from Lemma 6.15 and Proposition 6.16 (c). �

7. The h∗-polynomial of flow polytopes

In this article we have studied the volume of flow polytopes FG. A popular refinement
of the volume of integral polytope is known as the h∗-polynomial of an integral polytope.
We review these definitions and refer to [5, Chapters 3 & 10] for more background on this
subject.

Definition 7.1. For an integral polytope P ⊂ R
n and a nonnegative integer t ≥ 1 let

LP(t) := #tP ∩ Z
n, where tP is the t-th dilation of P. It is known that for an integral

d-polytope P the function LP(t) is a polynomial of degree d called the Ehrhart polynomial
of P. For an integral d-polytope P, the h∗-polynomial of P is the polynomial h∗

P(z) defined
by

1 +
∑

t≥1

LP(t)z
t =

h∗
P(z)

(1− z)d+1
.

Stanley [29] showed that the coefficients of h∗
P(t) are nonnegative integers. Moreover,

from the definition of h∗
P(z) and the fact that the leading term of LP(t) is vol(P)/d! (see, for

example, [5, Lemma 3.19]) one can see that h∗
P(1) = vol(P). Thus the h∗-polynomial gives

a refinement of the volume of P. An interesting open problem is to find a combinatorial
rule to compute the h∗-vector of flow polytopes FG for any graph G. Special cases have
been solved in [18, 22, 34]. In [3] the authors found a rule to compute the h∗-vectors of
the consecutive coordinates polytopes BS. Since by Proposition 5.4 these polytopes are flow
polytopes corresponding to certain non-nested graphs then we have a rule for the h∗-vectors
of this Catalan family of flow polytopes.

Given a total cyclic order γ of {0, 1, . . . , n}, let π(γ) be the permutation of [n] obtained
by reading the elements following zero in clockwise order. Given a word π = π1π2 · · ·πn, we
say π has a a descent at position i if πi > πi+1. The number of descents of π is denoted by
des(π).

Example 7.2. For the total cyclic order γ depicted in Figure 4 we have that π(γ) = 125364
with descents at the third and fifth positions so that des(π(γ)) = 2.

Theorem 7.3 (Ayyer–Josuat-Vergès–Ramassamy [3]). For a collection S of intervals in [d],
the h∗-polynomial of the polytope BS is

h∗
BS
(z) =

∑

γ∈AS

zdes(π(γ)).

Recall that for a non-nested graph G, the set of upper and lower G-cyclic orders are equal
by Proposition 5.7, and are denoted by AG.

29



Theorem 7.4. For a non-nested graph G, the h∗-polynomial of the flow polytope FG is

h∗
FG

(z) =
∑

γ∈AG

zdes(π(γ)).

Proof. Given a non-nested graph G by Proposition 5.5 there exists a collection S of intervals
in [d] such that FG is integrally equivalent to BS. Thus h∗

FG
(z) = h∗

BS
(z). The result then

follows by Theorem 7.3 since in this case AS = AG. �

Example 7.5. For the collection S = {[1, 2], [2, 4], [3, 6], [5, 7]} ⊂ [7] and its associated graph
in Figure 6, the h∗-polynomial is

h∗
FG

(z) = h∗
BS
(z) = 1 + 12z + 25z2 + 10z3.

Given a statistic stat : S → R on a set S we denote by PS,stat(z) =
∑

x∈S z
stat(x) the

generating polynomial of stat on S. In general, when a graph G contains nested pairs
of edges, A↑

G and A↓
G are not equal and the descent statistic gives different polynomials

PA↑
G
,des

(z) 6= PA↓
G
,des

(z). (See Example 7.7 below.) While Theorem 7.4 cannot hold in this

case, computations of the h∗-polynomial of flow polytopes using the Lidskii formula for
lattice points ([4, Theorem 38] and [20, Equation (1.2)]) suggest that this polynomial lies
“in between” PA↑

G
,des

(z) and PA↓
G
,des

(z).

For two polynomials a(z) =
∑

i≥0 aiz
i and b(z) =

∑
i≥0 biz

i, we say that a(z) is dominated

by b(z) and write a(z)⊳ b(z) if
∑k

i=0 ai ≤
∑k

i=0 bi for every k ≥ 0.

Conjecture 7.6. Given a spinal graph G we have that

PA↓
G
,des

(z)⊳ h∗
FG

(z)⊳ PA↑
G
,des

(z).

This conjecture has been computationally verified for all simple spinal graphs G with ≤ 7
vertices.

Example 7.7. Let G be the graph from Figure 4. The polynomials

PA↓
G
,des

(z) = h∗
FG

(z) = 1 + 7z + 7z2 + z3 and PA↑
G
,des

(z) = 1 + 9z + 6z2

satisfy Conjecture 7.6.

Example 7.8. Let G be the complete graph k7 on seven vertices. The polynomials

PA↓

k7
,des

(z) = 1 + 15z + 55z2 + 59z3 + 10z4,

h∗
Fk7

(z) = 1 + 16z + 58z2 + 56z3 + 9z4, and

PA↑

k7
,des

(z) = 1 + 18z + 64z2 + 51z3 + 6z4

satisfy Conjecture 7.6.

8. Open questions and further work

8.1. Graphs with equivalent flow polytopes. In Section 2 we showed several opera-
tions on graphs that yield integrally equivalent flow polytopes FG. We would like a full
characterization of graphs with integrally equivalent flow polytopes. See Question 2.16.
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8.2. Structure and enumeration of non-redundant column-convex {0, 1} matrices.

In Section 5.3 we showed that there are Catalan many non-redundant collections of intervals
of [d] by putting them in bijection with antichains in the type A root poset. The latter
have an inherent poset structure (ordered by inclusion) and we would like to know whether
the flow polytopes corresponding to each antichain are compatible with this poset. See
Question 5.16.

8.3. Generating functions for k-Euler and k-Entringer numbers. The Euler numbers
En, Springer numbers Sn and Entringer numbers En,r have beautiful generating functions.
The following are from [31, Proposition 1.6.1], [15, A001586], and [31, Exercise 141].

∑

n≥0

En

xn

n!
= sec x+ tan x

∑

n≥0

Sn

xn

n!
=

1

cosx− sin x

∑

m,n≥0

Em+n,[m,n]
xm

m!

yn

n!
=

cosx+ sin x

cos(x+ y)
, where [m,n] =

{
m if m+ n is odd,

n if m+ n is even

We propose generalizing these results for the k-Euler numbers Ak,d, the k-Springer numbers
Sk,d, and the k-Entringer numbers Es.

Question 8.1. Is there a closed form for the generating function for k-Euler, k-Springer,
and k-Entringer numbers?

8.4. A general rule to compute h∗-polynomial of flow polytopes. Theorem 7.4 gave
a rule to compute the h∗-polynomial of flow polytopes FG of non-nested graphs G using the
rule to compute the h∗-polynomials of consecutive coordinate polytopes in [3]. We would
like to find a formula to compute the h∗-polynomial for all flow polytopes FG and FG(a).
Here is a list of special cases that are known.

(i) For planar graphs G, it is shown in [22] that the polytope FG is integrally equivalent
to an order polytope of a poset [30]. Order polytopes of posets have a rule for their
h∗-polynomial by descents of linear extensions due to Stanley [31, Theorem 3.15.8].

(ii) A special case of the previous case is the order polytope of the zigzag poset, which
is integrally equivalent to the flow polytope of the planar graph G(2, d). Coons and
Sullivant [8, Theorem 1.9] give a new combinatorial interpretation for the coefficients
of the h∗-polynomial via shellings of the canonical triangulation of the order polytope.

(iii) For non-nested graphs G, which includes the distance graphs G(k, d + k), the h∗-
polynomial of FG is given by descents on G-cyclic orders (Theorem 7.4).

(iv) For ν-caracol graphs, which are certain graphs indexed by lattice paths, the authors
in [34] give a combinatorial formula involving ν-Narayana numbers for computing
the h∗-polynomial in two ways: via shellings of a generalization of the Tamari lattice,
and of principal order ideals in Young’s lattice.

Still, these cases do not cover some important flow polytopes like the Chan–Robbins–
Yuen polytope Fkn+1 [7], the Tesler polytope Fkn+1(1) [21], the flow polytope of the caracol
graph with netflow 1 [6] or the Pitman-Stanley polytope [32]. Some positivity results on
the h∗-polynomial and Ehrhart series of flow polytopes first appeared in [18]. One ap-
proach to compute h∗-polynomials is by studying triangulations of the polytopes. Danilov–
Karzanov–Koshevoy in [10] studied regular unimodular trinagulatons of flow polytopes FG

and Mészaros–Morales and Kapoor–Mészáros–Setiabrata [20, 17] studied subdivisions of flow
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polytopes FG(b) into products of simplices (which can each be further triangulated) related
to the Lidskii formulas (see Theorem 3.1).
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