Combinatorial interpretations in affine Coxeter groups

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Brant C. Jones, James Madison University

What is a Coxeter group?

A **Coxeter group** is a group with

- ▶ Generators: $S = \{s_1, s_2, \dots, s_n\}$
- ▶ Relations: $s_i^2 = 1$, $(s_i s_i)^{m_{i,j}} = 1$ where $m_{i,j} \ge 2$ or $= \infty$
 - $ightharpoonup m_{i,j} = 2$: $(s_i s_i)(s_i s_i) = 1 \longrightarrow s_i s_i = s_i s_i$ (they commute)
 - $m_{i,j} = 3$: $(s_i s_i)(s_i s_i)(s_i s_i) = 1 \rightarrow s_i s_i s_i = s_i s_i s_i$ (braid relation)
 - $m_{i,j} = \infty$: s_i and s_i are not related.

Why Coxeter groups?

- They're awesome.
- Discrete Geometry: Symmetries of regular polyhedra.
- Algebra: Symmetric group generalizations. (Kac-Moody, Hecke)
- ▶ Geometry: Classification of Lie groups and Lie algebras

Examples of Coxeter groups

A shorthand notation is the Coxeter graph:

- ▶ Vertices: One for every generator i
- ► Edges: Create an edge between i and j when $m_{i,j} \ge 3$ Label edges with $m_{i,j}$ when ≥ 4 .

Dihedral group

- ► Generators: s, t.
- ▶ Relation: $(st)^m = 1$.

Symmetry group of regular *m*-gon.

Examples of Coxeter groups

(Finite) *n*-permutations S_n

An *n*-permutation is a permutation of $\{1, 2, ..., n\}$, (e.g. 214536).

Every n-permutation is a product of adjacent transpositions.

▶
$$s_i: (i) \leftrightarrow (i+1)$$
. (e.g. $s_4 = 123546$).

Example. Write 214536 as $s_3s_4s_1$.

This is a Coxeter group:

- ▶ Generators: s_1, \ldots, s_{n-1}
- $s_i s_j = s_j s_i$ when $|i j| \ge 2$ (commutation relation)
- $ightharpoonup s_i s_i s_i = s_i s_i s_i$ when |i j| = 1 (braid relation)

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine *n*-Permutations $\widetilde{S_n}$

- ▶ Generators: $s_0, s_1, \ldots, s_{n-1}$
- ► Relations:

- $ightharpoonup s_0$ has a braid relation with s_1 and s_{n-1}
- ▶ How does this impact 1-line notation?
 - Perhaps interchanges 1 and n?
 - Not quite! (Would add a relation)
- Better to view graph as:
 - Every generator is the same.

Examples of Coxeter groups

Affine *n*-**Permutations** $\widetilde{S_n}$ (G. Lusztig 1983, H. Eriksson, 1994)

Write an element $\widetilde{w} \in S_n$ in 1-line notation as a permutation of \mathbb{Z} .

Generators transpose infinitely many pairs of entries:

$$s_i: (i) \leftrightarrow (i+1) \dots (n+i) \leftrightarrow (n+i+1) \dots (-n+i) \leftrightarrow (-n+i+1) \dots$$

In \widetilde{S}_4 ,	· · · w(-4)	w(-3) w(-2) w(-1) w(0)	w(1) w(2) w(3) w(4)	w(5) w(6) w(7) w(8)	w(9)····
s_1	4	-2 -3 -1 0	2 1 3 4	6 5 7 8	10
<i>s</i> ₀	3	-4 -2 -1 1	0 2 3 5	4 6 7 9	8
<i>s</i> ₁ <i>s</i> ₀	2	-4 -3 -1 2	0 1 3 6	4 5 7 10	8

Symmetry: Can think of as integers wrapped around a cylinder.

 \widetilde{w} is defined by the window $[\widetilde{w}(1), \widetilde{w}(2), \dots, \widetilde{w}(n)]$. $s_1s_0 = [0, 1, 3, 6]$

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine *n*-Permutations $\widetilde{S_n}$

Coxeter Groups Interpretations Application Future work

Examples of Coxeter groups

Affine *n*-**Permutations** $\widetilde{S_n}$ — elements correspond to alcoves.

Properties of Coxeter groups

For a elements w in a Coxeter group W,

- w may have multiple expressions.
 - ▶ Transfer between them using relations.

Example. In
$$S_4$$
, $w = s_1 s_2 s_3 s_1 = s_1 s_2 s_1 s_3 = s_2 s_1 s_2 s_3 = s_2 s_1 s_2 s_3 s_1 s_1$

▶ w has a shortest expression (this length: Coxeter length)

For a Coxeter group \widetilde{W} ,

- lacktriangle An induced subgraph of W's Coxeter graph is a subgroup W
- Every element $\widetilde{w} \in W$ can be written $\widetilde{w} = w^0 w$, where $w^0 \in \widetilde{W}/W$ is a coset representative and $w \in W$.

S_n as a subgroup of \widetilde{S}_n

Key concept: View S_n as a subgroup of $\widetilde{S_n}$.

- ▶ Write $\widetilde{w} = w^0 w$, where $w^0 \in \widetilde{S_n}/S_n$ and $w \in S_n$.
 - \triangleright w^0 determines the entries; w determines their order.

Example. For
$$\widetilde{w} = [-11, 20, -3, 4, 11, 0] \in \widetilde{S}_6$$
, $w^0 = [-11, -3, 0, 4, 11, 20]$ and $w = [1, 3, 6, 4, 5, 2]$.

Many interpretations of these minimal length coset representatives.

Combinatorial interpretations of \widetilde{S}_n/S_n

May 12, 2011 10 / 37

An abacus model for S_n/S_n

(James and Kerber, 1981) Given $w^0 = [w_1, \dots, w_n] \in \widetilde{S}_n / S_n$,

- Place integers in n runners.
- Circled: beads. Empty: gaps
- ▶ Bijection: Given w^0 , create an abacus where each runner has a lowest bead at wi.

Example:
$$[-4, -3, 7, 10]$$

These abaci are flush and balanced.

The generators act nicely on the abacus.

$$-11$$
 (-10) (-9) (-8)

$$1 \quad (2) \quad (3) \quad 4$$

Action of generators on the abacus

- \triangleright s_i acts by interchanging runners i and i+1.
- s₀ acts by interchanging runners 1 and n, with level shifts.

Example: Consider
$$[-4, -3, 7, 10] = s_1 s_0 s_2 s_1 s_3 s_2 s_0 s_3 s_1 s_0$$
.

Start with id = [1, 2, 3, 4] and apply the generators one by one:

Combinatorial interpretations of \widetilde{S}_n/S_n

May 12, 2011 13 / 37

Integer partitions and *n*-core partitions

For an integer partition $\lambda = (\lambda_1, \dots, \lambda_k)$ drawn as a Ferrers diagram,

The *hook length* of a box is # boxes below and to the right.

ĺ	10	9	6	5	2	1
Ī	7	6	3	2		
Ī	6	5	2	1		
	3	2				
Į	2	1				

An n-core is a partition with no boxes of hook length dividing n.

Example.
$$\lambda$$
 is a 4-core, 8-core, 11-core, 12-core, etc. λ is NOT a 1-, 2-, 3-, 5-, 6-, 7-, 9-, or 10-core.

Core partitions for \widetilde{S}_n/S_n

Elements of \widetilde{S}_n/S_n are in bijection with *n*-cores.

Bijection: {abaci} \longleftrightarrow {*n*-cores}

Rule: Read the boundary steps of λ from the abacus:

► A bead ↔ vertical step

► A gap ↔ horizontal step

Fact: Abacus flush with *n*-runners \leftrightarrow partition is *n*-core.

oxeter Groups Interpretations Application Future work

Action of generators on the core partition

- ▶ Label the boxes of λ with residues.
- \triangleright s_i acts by adding or removing boxes with residue i.

Example: Let's see the deconstruction of $s_1s_0s_2s_1s_3s_2s_0s_3s_1s_0$:

0	1	2	3	0	1
3	0	1	2	3	0
2	3	0	1	2	3
1	2	3	0	1	2
0	1	2	3	0	1
3	0	1	2	3	0

Applying generator s_1 removes all removable 1-boxes.

May 12, 2011 16 / 37

Combinatorial interpretations of \widetilde{S}_n/S_n

May 12, 2011 17 / 37

Bounded partitions for \widetilde{S}_n/S_n

A partition $\beta = (\beta_1, \dots, \beta_k)$ is *b-bounded* if $\beta_i \leq b$ for all *i*.

Elements of $\widetilde{S_n}/S_n$ are in bijection with (n-1)-bounded partitions.

Bijection: (Lapointe, Morse, 2005)

$$\{n\text{-cores }\lambda\} \leftrightarrow \{(n-1)\text{-bounded partitions }\beta\}$$

- ▶ Remove all boxes of λ with hook length $\geq n$
- Left-justify remaining boxes.

$$\lambda = (6, 4, 4, 2, 2)$$

$$\beta = (2, 2, 2, 2, 2)$$

Canonical reduced expression for \widetilde{S}_n/S_n

Given the bounded partition, read off the reduced expression:

Method: (Berg, Jones, Vazirani, 2009)

- ightharpoonup Fill β with residues i
- Tally s_i reading right-to-left in rows from bottom-to-top

Example.
$$[-4, -3, 7, 10] = s_1 s_0 s_2 s_1 s_3 s_2 s_0 s_3 s_1 s_0$$
.

▶ The Coxeter length of w is the number of boxes in β .

Fully commutative elements

Definition. An element in a Coxeter group is **fully commutative** if it has only one reduced expression (up to commutation relations).

NO BRAIDS ALLOWED!

Example. In S_4 , $s_1s_2s_3s_1$ is **not fully commutative** because

$$s_1s_2s_3s_1 \stackrel{\mathsf{OK}}{=} s_1s_2s_1s_3 \stackrel{\mathsf{BAD}}{=} s_2s_1s_2s_3$$

Question: What is $s_1s_2s_1$ in 1-line notation?

Answer: 321456...

Enumerating fully commutative elements

Question: How many fully commutative elements are there in S_n ? Answer: Catalan many! S_1 : 1. id S_2 : **2.** id, S_1 S_3 : **5.** id, S_1 , S_2 , S_1S_2 , S_2S_1 S_4 : 14. id, s_1 , s_2 , s_3 , s_1s_2 , s_2s_1 , s_2s_3 , s_3s_2 , s_1s_3 , S₁S₂S₃, S₁S₃S₂, S₂S₁S₃, S₃S₂S₁, S₂S₁S₃S₂ Key idea: (Billey, Jockusch, Stanley, 1993) w is fully commutative \iff w is 321-avoiding. (Knuth, 1973) These are counted by the Catalan numbers.

oxeter Groups Interpretations Application Future work

Enumerating fully commutative elements

Question: How many fully commutative elements are there in $\widetilde{S_n}$?

Answer: Infinitely many! (Even in \widetilde{S}_3 .)

$$id, s_1, s_1s_2, s_1s_2s_0, s_1s_2s_0s_1, s_1s_2s_0s_1s_2, \dots$$

Multiplying the generators cyclically does not introduce braids.

This is not the right question.

Enumerating fully commutative elements

Question: How many fully commutative elements are there in \widetilde{S}_n , with Coxeter length ℓ ?

In
$$\widetilde{S}_3$$
: id, s_1 , s_1s_0 s_2s_2 , $s_1s_0s_2$ $s_1s_2s_0$,... s_2 s_2s_0 s_2s_1 $s_2s_0s_2s_1$ $s_2s_0s_1$ $s_2s_1s_0$

Question: Determine the coefficient of q^{ℓ} in the generating function

$$f_n(q) = \sum_{\widetilde{w} \in \widetilde{S}_n^{FC}} q^{\ell(w)}.$$

$$f_3(q) = 1q^0 + 3q^1 + 6q^2 + 6q^3 + \dots$$

Answer: Consult your friendly computer algebra program.

DdddaaaaAAAAaaaaTTaaaaAA

Brant calls up and says: "Hey Chris, look at this data!"

$$f_3(q) = 1 + 3q + 6q^2 + 6q^3 + 6q^4 + 6q^5 + \cdots$$

$$f_4(q) = 1 + 4q + 10q^2 + 16q^3 + 18q^4 + 16q^5 + 18q^6 + \cdots$$

$$f_5(q) = 1 + 5q + 15q^2 + 30q^3 + 45q^4 + 50q^5 + 50q^6 + 50q^7 + 50q^8 + \cdots$$

$$f_6(q) = 1 + 6q + 21q^2 + 50q^3 + 90q^4 + 126q^5 + 146q^6 + 150q^7 + 156q^8 + 152q^9 + 156q^{10} + 150q^{11} + 158q^{12} + 150q^{13} + 156q^{14} + 152q^{15} + 156q^{16} + 150q^{17} + 158q^{18} + \cdots$$

$$f_7(q) = 1 + 7q + 28q^2 + 77q^3 + 161q^4 + 266q^5 + 364q^6 + 427q^7 + 462q^8 + 483q^9 + 490q^{10} + 490q^{11} + 490q^{12} + 490q^{13} + \cdots$$

Notice:

▶ The coefficients eventually repeat.

Goals: \star Find a formula for the generating function $f_n(q)$. ★ Understand this periodicity.

Pattern Avoidance Characterization

Key idea: (Green, 2002)

 \widetilde{w} is fully commutative $\iff \widetilde{w}$ is 321-avoiding.

Example. [-4, -1, 1, 14] is **NOT** fully commutative because:

	· · · w(-4)	w(-3) w(-2) w(-1) w(0)	w(1) w(2) w(3) w(4)	w(5) w(6) w(7) w(8)	w(9)···
\widetilde{w}	6	-8 -5 -3 10	-4 -1 1 14	0 3 5 18	4

Game plan

Goal: Enumerate 321-avoiding affine permutations \widetilde{w} .

- ▶ Write $\widetilde{w} = w^0 w$, where $w^0 \in \widetilde{S_n}/S_n$ and $w \in S_n$.
 - \triangleright w^0 determines the entries; w determines their order.

Example. For
$$\widetilde{w} = [-11, 20, -3, 4, 11, 0] \in \widetilde{S}_6$$
, $w^0 = [-11, -3, 0, 4, 11, 20]$ and $w = [1, 3, 6, 4, 5, 2]$.

- ▶ Determine which w^0 are 321-avoiding.
- ▶ Determine the finite w such that w^0w is still 321-avoiding

May 12, 2011 26 / 37

Normalized abacus and 321-avoiding criterion for \widetilde{S}_n/S_n

We use a *normalized* abacus diagram; shifts all beads so that the first gap is in position n + 1; this map is invertible.

Theorem. (H–J '09) Given a normalized abacus for $w^0 \in \widetilde{S_n}/S_n$, where the last bead occurs in position i,

$$w^0$$
 is lowest beads in runners only occur in fully commutative $\{1,\ldots,n\}\cup\{i-n+1,\ldots,i\}$

Idea: Lowest beads in runners ↔ entries in base window.

w(-n+1)	w(-n+2	2)	w(-1)	w(0)	w(1)	w(2)		w(n-1)	w(n)	w(n+1) w(n+2	2)	w(2n-1)	w(2n)
lo	lo		hi	hi	lo	lo		hi	hi	lo	lo		hi	hi
lo	lo	med	hi	hi	lo	lo	med	hi	hi	lo	lo	med	hi	hi

Long versus short elements

Partition $\widetilde{S_n}$ into long and short elements:

Short elements

Lowest bead in position $i \le 2n$ Finitely many Hard to count

Long elements

Lowest bead in position i > 2nCome in infinite families Easy to count

Explain the periodicity

Enumerating long elements

For long elements
$$\widetilde{w} \in \widetilde{S_n}$$
, the base window for w^0 is
$$\begin{bmatrix} a, a, \dots, a, b, b, \dots, b \end{bmatrix}$$
 where $1 \le a \le n$, and $n + 2 \le b$.

Question: Which permutations $w \in S_n$ can be multiplied into a w^0 ?

- \triangleright We can not invert any pairs of a's, nor any pairs of b's. (Would create a 321-pattern with an adjacent window)
- ▶ Only possible to *intersperse* the a's and the b's.

How many ways to intersperse
$$(k)$$
 a's and $(n - k)$ b's? $\binom{n}{k}$

BUT: We must also keep track of the *length* of these permutations. $\begin{bmatrix} n \\ k \end{bmatrix}_a$ This is counted by the q-binomial coefficient:

$${n \brack k}_q = \frac{(q)_n}{(q)_k(q)_{n-k}},$$
 where $q_n = (1-q)(1-q^2)\cdots(1-q^n)$

Binghamton University Combinatorics Seminar Combinatorial interpretations in affine Coxeter groups

Enumerating long elements

After we:

- ▶ Enumerate by length all possible w^0 with (k) a's and (n-k) b's.
- ▶ Combine the Coxeter lengths by $\ell(\widetilde{w}) = \ell(w^0) + \ell(w)$.

Then we get:

Theorem. (H–J '09) For a fixed $n \ge 0$, the generating function by length for *long* fully commutative elements $\widetilde{w} \in \widetilde{S}_n^{FC}$ is

$$\sum q^{\ell(\widetilde{w})} = \frac{q^n}{1 - q^n} \sum_{k=1}^{n-1} {n \brack k}_q^2.$$

May 12, 2011 30 / 37

Periodicity of fully commutative elements in \widetilde{S}_n

Corollary. (H–J '09) The coefficients of $f_n(q)$ are eventually periodic with period dividing n.

When *n* is prime, the period is 1: $a_i = \frac{1}{n} \left(\binom{2n}{n} - 2 \right)$.

Proof. For i sufficiently large, all elements of length i are long. Our generating function is simply some polynomial over $(1 - q^n)$:

$$\frac{q^n}{1-q^n}\sum_{k=1}^{n-1} {n \brack k}_q^2 = \frac{P(q)}{1-q^n} = P(q)(1+q^n+q^{2n}+\cdots)$$

When n is prime, an extra factor of $(1 + q + \cdots + q^{n-1})$ cancels;

$$\frac{1}{1-q} \left[\frac{q^n}{1+q+\cdots+q^{n-1}} \sum_{k=1}^{n-1} {n \brack k}_q^2 \right]$$

As suggested by a referee, we know that $a_i = P(1) = \frac{1}{n} \sum_{k=1}^{n-1} {n \choose k}^2$.

Short elements are hard

For short elements $\widetilde{w} \in \widetilde{S_n}$, the base window for w^0 is $[\underline{a},\ldots,\underline{a},b,\ldots,b,c,\ldots,c]$, and there is more interaction: $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$

No a can invert with an a or b. No c can invert with a b or c.

- \triangleright Count \widetilde{w} where some a intertwines with some c.
- ▶ Count \widetilde{w} w/o intertwining and 0 descents in the b's.
- ▶ Count \widetilde{w} w/o intertwining and 1 descent in the b's.
 - ▶ Not so hard to determine the acceptable finite permutations w.

► Such as
$$\sum_{M \ge 0} x^{L+M+R} \sum_{\mu=1}^{M-1} {M \choose \mu}_q - 1 \sum_{\mu=1}^{L+\mu} {R+M-\mu \choose M-\mu}_q$$

- ▶ Count \widetilde{w} w/o intertwining and 2 descents in the b's.
- ightharpoonup Count \widetilde{w} which are finite permutations. (Barcucci et al.)
 - Solve functional recurrences (Bousquet-Mélou)
 - ► Such as $D(x, q, z, s) = N(x, q, z, s) + \frac{xqs}{1-qs} (D(x, q, z, 1) D(x, q, z, qs)) + xsD(x, q, z, s)$

oxeter Groups Interpretations Application Future work

Future Work

- ▶ Extend to $\widetilde{B_n}$, $\widetilde{C_n}$, and $\widetilde{D_n}$
 - ▶ Develop combinatorial interpretations √
 - ▶ 321-avoiding characterization?
- Heap interpretation of fully commutative elements
 - ► Can use Viennot's heaps of pieces theory
 - Better bound on periodicity
- ▶ More combinatorial interpretations for W/W
 - What do you know?

Combinatorial interpretations of \widetilde{S}_n/S_n

Combinatorial interpretations of \widetilde{C}/C , \widetilde{B}/B , \widetilde{B}/D , \widetilde{D}/D

May 12, 2011 35 / 37

oxeter Groups Interpretations Application Future work

Future Work

- ▶ Extend to $\widetilde{B_n}$, $\widetilde{C_n}$, and $\widetilde{D_n}$
 - ▶ Develop combinatorial interpretations √
 - ▶ 321-avoiding characterization?
- Heap interpretation of fully commutative elements
 - ► Can use Viennot's heaps of pieces theory
 - Better bound on periodicity
- ▶ More combinatorial interpretations for W/W
 - What do you know?

May 12, 2011 36 / 37

Coxeter Groups Interpretations Application Future work

Thank you!

Slides available: people.qc.cuny.edu/chanusa > Talks

- Anders Björner and Francesco Brenti. Combinatorics of Coxeter Groups, Springer, 2005.
- Christopher R. H. Hanusa and Brant C. Jones.
 The enumeration of fully commutative affine permutations

 European Journal of Combinatorics. Vol 31, 1342–1359. (2010)
- Christopher R. H. Hanusa and Brant C. Jones.

 Abacus models for parabolic quotients of affine Coxeter groups