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What is a Coxeter group?

A Coxeter group is a group with
» Generators: S = {s1,%,...,5n}
> Relations: s? =1, (s;s5;)™J =1 where m;; > 2 or = 0
» mij=2: (sisj)(sis;) =1 —  sisj =s;s; (they commute)
» mjj = 3: (sisj)(sisj)(sisj) = 1 — sjsjs; = sjs;s; (braid relation)
» m; ;= 00: 5; and s; are not related.
Why Coxeter groups?
» They're awesome.
> Discrete Geometry: Symmetries of regular polyhedra.
» Algebra: Symmetric group generalizations. (Kac-Moody, Hecke)

» Geometry: Classification of Lie groups and Lie algebras
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Coxeter Groups

Examples of Coxeter groups

A shorthand notation is the Coxeter graph:

» Vertices: One for every generator |

> Edges: Create an edge between i and j when m;; > 3
Label edges with m; j when > 4.

When m = 3:
Dihedral group .

\
\
. O]
\
®./®
\
\
\

» Generators: s, t.

» Relation: (st)™ = 1. O @ ©

Symmetry group of regular m-gon.
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Coxeter Groups

Examples of Coxeter groups

(Finite) n-permutations S,
An n-permutation is a permutation of {1,2,...,n}, (e.g. 214536).

Every n-permutation is a product of adjacent transpositions.
> 5 (i)« (I +1). (e.g. s4 =123546).
Example. Write 214536 as s35451.

This is a Coxeter group:

» Generators: si,...,S,_1
> s;sj = sjs; when |i — j| > 2 (commutation relation)

> s;isjs; = s;s;sj when |/ — j| =1 (braid relation)
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Coxeter Groups

Examples of Coxeter groups

Affine n-Permutations g;

» Generators: sp,S1,---,5n-1
> Relations:
» sp has a braid relation with s; and s,_1
» How does this impact 1-line notation?
» Perhaps interchanges 1 and n?
» Not quite! (Would add a relation)
> Better to view graph as:
» Every generator is the same.
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Coxeter Groups

Examples of Coxeter groups
Affine n-Permutations S, (G. Lusztig 1983, H. Eriksson, 1994)
Write an element w € S, in 1-line notation as a permutation of Z.

Generators transpose infinitely many pairs of entries:
Si - (I) — (i+1) (n+i) — (n—|—i—|—1) (—n+i) — (—n+i+1)

In 54, s w(-3) w(-1) w(0) w(1) w(2) w(3) w(4) w(5) w(7) w(8)
S1 -2 -1 0 2 1 3 4 6 7 8
s 4 2 11]0235 /46 709

| sis0 | | 4 1 2]0136]4 7 10 |

Symmetry: Can think of as integers wrapped around a cylinder.

w is defined by the window [w(1), w(2),...,w(n)]. siso =[0,1,3,6]
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Coxeter Groups

Examples of Coxeter groups

Affine n-Permutations g;
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Coxeter Groups

Examples of Coxeter groups

Affine n-Permutations S, — elements correspond to alcoves.
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Properties of Coxeter groups

For a elements w in a Coxeter group W,
» w may have multiple expressions.
» Transfer between them using relations.

Examp/e. In 54, W = 51525351 = 51525153 = S2515253 = S$25152535151

» w has a shortest expression (this length: Coxeter length)

For a Coxeter group w,

» An induced subgraph of W's Coxeter graph is a subgroup W

> Every element w € W can be written w = w%w, where

w® € W/W is a coset representative and w € W.
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S, as a subgroup of S,

Key concept: View S, as a subgroup of g;

» Write w = w®w, where w® € S,/S, and w € S,,.
» w0 determines the entries; w determines their order.

Example. For w = [—11,20,—3,4,11,0] € S,
w® = [~11,-3,0,4,11,20] and w = [1,3,6,4,5,2].

Many interpretations of these minimal length coset representatives.
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Interpretations

Combinatorial interpretations of §,,/S,7

[-4,-3,7,10]

Wi ndpw 8888
109D HSIS notation 999
lole}
reduced abacus 80
expression diagram

elements of
S/S

bounded core
partition partition _—
% root lattice AR
point o

(-1,2,1,-2)
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Interpretations

An abacus model for :97,/5,7

(James and Kerber, 1981) Given w° = [wy, ...,

» Place integers in n runners.

» Circled: beads. Empty: gaps

» Bijection: Given w?, create

an abacus where each runner
has a lowest bead at w;.

Example: [—4,—3,7,10]

These abaci are flush and balanced.

The generators act nicely on the abacus.
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W] € Sn/Sh.
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Action of generators on the abacus

» s; acts by interchanging runners i and i + 1.

> sp acts by interchanging runners 1 and n, with level shifts.
Example: Consider [—4,—3,7,10] = s1505251535250535150-

Start with id=[1,2, 3, 4] and apply the generators one by one:

OO ClRICIC) OOOO ClRICIC) OOOO
QOO QOO QOO QOO QOO
OGO0 . BROG , OGOO ., BRO® ., OGO
OO — O+ - OO+ - OO — O@® =
5 6 7 8 G s 7 8 s (&) 7 8 HORAR: CICREE:

[1,2,3,4] [0,2,3,5] [0,1,3,6] [-1,1,4,6] [-1,0,5,6]
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Interpretations

Combinatorial interpretations of §,,/S,7
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Integer partitions and n-core partitions

For an integer partition A = (\1,..., Ax) drawn as a Ferrers diagram,

[]

The hook length of a box is # boxes below and to the right.

10[e]6]5]2]1]
7]6]3]2
6[5(2[1
3[2

2[1]

An n-core is a partition with no boxes of hook length dividing n.

Example. X\ is a 4-core, 8-core, 11-core, 12-core, etc.
Ais NOT a 1-, 2-, 3-, 5-, 6-, 7-, 9-, or 10-core.

Combinatorial interpretations in affine Coxeter groups Binghamton University Combinatorics Seminar

Christopher R. H. Hanusa  Queens College, CUNY May 12, 2011 14 /37



Interpretations

Core partitions for §,,/S,7

Elements of SN,,/S,7 are in bijection with n-cores.

Bijection: {abaci} «— {n-cores}

Rule: Read the boundary steps of A from the abacus:

» A bead < vertical step » A gap < horizontal step

CIRICIC) u
QOO

OO@- |
0O,
5 @@ 8
9 n 12

13 14 15 16

I

Fact: Abacus flush with n-runners < partition is n-core.
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Action of generators on the core partition

> Label the boxes of A with residues.

» s; acts by adding or removing boxes with residue /.

Example: Let's see the deconstruction of s15)5551535>50535150:

| Applying generator s;
removes all removable 1-boxes.

WOk WO
Ol FR|N|WwW|O|F
P N WOl N
N W OlFR|INlw
W O Bk N Wlo
O P N W OfkF
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Interpretations

Combinatorial interpretations of §,,/S,7
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Interpretations

Bounded partitions for §,,/S,7
A partition 8 = (f1,...,0k) is b-bounded if 5; < b for all i.
Elements of SN,,/S,7 are in bijection with (n — 1)-bounded partitions.
Bijection: (Lapointe, Morse, 2005)
{n-cores A} < {(n — 1)-bounded partitions 3}

» Remove all boxes of A\ with hook length > n
> Left-justify remaining boxes.

w]o]e6][5]2]1]
716132
6|5(2]|1 SN N
3|2
2|1
A= (6,4,4,2,2) B =(2,22202)
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Interpretations

Canonical reduced expression for S,/S,

Given the bounded partition, read off the reduced expression:
Method: (Berg, Jones, Vazirani, 2009)

» Fill 8 with residues i
» Tally s; reading right-to-left in rows from bottom-to-top

Example. [—4,—3,7,10] = s1505251535250535150-

QICICIS

SIS o1
NOIOK L] 3]0
s@®@O s — — — [2]3
91112 HE 112
13 14 15 16 L1 | 01

17 18 19 20

» The Coxeter length of w is the number of boxes in (.
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Fully commutative elements

Definition. An element in a Coxeter group is fully commutative if
it has only one reduced expression (up to commutation relations).

INO BRAIDS ALLOWED! |

Example. In S4, sisps3s1 is not fully commutative because
OK BAD
51525351 = 51525153 = 52515253

Question: What is s;s2s1 in 1-line notation?

Answer: 321456...
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Application

Enumerating fully commutative elements

Question: How many fully commutative elements are there in 5,7

Answer: Catalan many!

512 1 id
52: 2. id, S1
S3: B. id, 51, s, 515, $S1

Sa: 14. id, s1, sp, S3, S152, S251, S253, S352, 5153,
515253, 515352, S25153, S35251, S2515352

Key idea: (Billey, Jockusch, Stanley, 1993)
w is fully commutative — w is 321-avoiding.

(Knuth, 1973) These are counted by the Catalan numbers.
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Enumerating fully commutative elements

Question: How many fully commutative elements are there in 5,7
Answer: Infinitely many! (Even in S3.)
id, 51, 5152, 515250, $1525051, 51525051525 - - -

Multiplying the generators cyclically does not introduce braids.

This is not the right question.
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Enumerating fully commutative elements

Question: How many fully commutative elements are there in S,
with Coxeter length £7

S0 5051 SpS2 S0S1S2 SpS2s1
In S3: id, s1 , 5150 S1S , 515052 S150S0 .- -
52 5250 S251 525051 525150

Question: Determine the coefficient of g° in the generating function

fn(q): Z qZ(W)'

weSHe
f3(q) = 1¢° + 3q¢* +64° +6¢° + ...
Answer: Consult your friendly computer algebra program.
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Application

DdddaaaaAAAAaaaaT TaaaaAA

Brant calls up and says: “Hey Chris, look at this data!”

f3(q) =1+3g+6¢g*>+6¢>+0g*+ ¢+ ---

fa(q) = 1+ 4q + 10g® + 16¢° + 18qg* + 16¢° + 184° + - - -

fs(q) = 1+5q+15¢° +30qg3 +45¢* +50¢° +50¢° + " q"+ ¥+ --

fs(q) = 1+ 6q + 21> + 50q> + 90g* + 1264° + 1464° +
150q" + 15642 + 152¢° + 1564¢'° 4 150¢** + 158q* +
150913 + 1564'* + 152q'° + 156¢1% + 150417 + 15848 + - .-

f1(q) = 1+7q +28q% + 77q> + 161g* + 2664° 4 364q° + 427q" +
46248 + 483q° +490¢° + 490g + 1 00g2 4+ g3 4.,

Notice:

» The coefficients eventually repeat.

Goals: % Find a formula for the generating function f,(q).
% Understand this periodicity.
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Application

Pattern Avoidance Characterization

Key idea: (Green, 2002)

w is fully commutative — w is 321-avoiding.

Example. [-4,—1,1,14] is NOT fully commutative because:

w(-3) w(-1) w(0) w(l) w w(4) w(5) w(7) w(8)

2 w(3)
W 8 5 3[10]]| -4 -1[1]14 |[0] 3 5 18
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Game plan

Goal: Enumerate 321-avoiding affine permutations w.

» Write w = w®w, where w® € S,/S, and w € S,,.
» w0 determines the entries; w determines their order.

Example. For w = [—11,20,—3,4,11,0] € S,
w® = [~11,-3,0,4,11,20] and w = [1,3,6,4,5,2].

» Determine which w° are 321-avoiding.

» Determine the finite w such that w®w is still 321-avoiding
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Application

Normalized abacus and 321-avoiding criterion for §,,/S,7

=
Wfa use a normalized abacus. d|agram; L B0 - lelclo)
shifts all beads so that the first gap is @O 500

9 u 12 10 (1) (@)

in position n+ 1; this map is invertible. = u = 13 u@lﬁ
Theorem. (H-J ‘09) Given a normalized abacus for w° € S,/S,,
where the last bead occurs in position 1/,

0 .

w® is lowest beads in runners only occur in
fully commutative {1,....,n}U{i—n+1,... i}
Idea: Lowest beads in runners < entries in base window.
w(-n+1) w(-1) w(0) w(l) w(2) w(n-1) w(n) w(n+1) w(2n-1) w(2n)
lo hi  hi lo lo hi  hi lo hi  hi
lo hi [hi] | o o hi hi hi  hi
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Application

Long versus short elements

Partition S, into long and short elements:

Short elements
Lowest bead in position i < 2n
Finitely many
Hard to count

OOO® OO®
5 (6) 7 8 5 6 (D)

9 10 11 12 9 10 11 12
13 14 15 16 13 14 15 16
17 18 19 20 17 18 19 20
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Long elements
Lowest bead in position i > 2n
Come in infinite families
Easy to count
Explain the periodicity

OGO OGE®
5@7 8 5 6@
911 12 9 10@@
1315 6 13 14@16

17 18 19 20 17 18 19 20
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Application

Enumerating long elements

N OOO®
For long elements w € S,,, the base window for w? is Z ;%
[a,a,...,a,b,b,... b where 1 <a<n,and n+2<b. s u@un

Question: Which permutations w € S, can be multiplied into a w°?

» We can not invert any pairs of a's, nor any pairs of b's.
(Would create a 321-pattern with an adjacent window)
» Only possible to intersperse the a's and the b's.

How many ways to intersperse (k) a's and (n— k) b's? ()
BUT: We must also keep track of the /ength of these permutations.
This is counted by the g-binomial coefficient: [Z]q
(1 = @tars where an = (1= @)1 = ¢%)+- (1= 0")

Binghamton University Combinatorics Seminar
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Enumerating long elements

After we:
» Enumerate by length all possible w® with (k) a's and (n — k) b's.
» Combine the Coxeter lengths by £(w) = £(w°) + £(w).

Then we get:

Theorem. (H-J '09) For a fixed n > 0, the generating function by
length for /ong fully commutative elements w € S/C is

n n—1
Z qZ(\Tv) _ q n
1—qgn k

k=1

2

q
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Application

Periodicity of fully commutative elements in S,

Corollary. (H-J '09) The coefficients of f,(q) are eventually
periodic with period dividing n.
When n is prime, the period is 1: aj = %((2:) — 2).

Proof. For i sufficiently large, all elements of length i are long.
Our generating function is simply some polynomial over (1 — g"):

n—1 2
L i), T PO )
k=1 q

n

When n is prime, an extra factor of (1+ g+ --- + q" 1) cancels;
1 q" 2
1—g 1+q+~~+q”1kz_:1[k]q

As suggested by a referee, we know that a; = P(1) = %ZZ;} (Z)2
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Application

Short elements are hard

For short elements w € S,,, the base window for w9 is OO
[a,...,a,b,...,b,c,...,c], and there is more interaction: @
9 10 11 12
No a can invert with an a or b. No ¢ can invert with a b or c.
» Count w where some a intertwines with some c.

v

Count w w/o intertwining and 0 descents in the b's.
Count w w/o intertwining and 1 descent in the b's.
» Not so hard to determine the acceptable finite permutations w.
> Such as 3o X MRS (M 1) [H1] [ 0]
Count w w/o intertwining and 2 descents in the b's.
Count w which are finite permutations. (Barcucci et al.)
» Solve functional recurrences (Bousquet-Mélou)
» Such as D(x,q,z,s) =

N(x,q,z,s) + ff’;s (D(x, q,z,1) — D(x, q, z, qs)) + xsD(x, q,z,s)

v

q

vy
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Future Work

» Extend to é: a and Z)v,,

» Develop combinatorial interpretations v
» 321-avoiding characterization?

» Heap interpretation of fully commutative elements
» Can use Viennot's heaps of pieces theory
» Better bound on periodicity

» More combinatorial interpretations for W/W
» What do you know?
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Future work

Combinatorial interpretations of C/C, B/B, B/D, D/D

[-11,-9,-1,8,16,18]

S0S150$3%251 505283 WI ndOW §§8§8§
S25158253%251% notation o0 O
reduced abacus S 8
expression diagram
elements of
W/ W
bounded core
—rpartition partition P
Emmm root lattice EE= |
(1,2,-2)
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Thank you!

Slides available: people.qc.cuny.edu/chanusa > Talks
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