Observed covariance between ecosystem carbon exchange and atmospheric boundary layer dynamics at a site in northern Wisconsin

Received 19 September 2003; revised 18 February 2004; accepted 2 March 2004; published 17 April 2004.

[1] Ecosystem CO₂ exchange and atmosphere boundary layer (ABL) mixing are correlated diurnally and seasonally as they are both driven by solar insulation. Tracer transport models predict that these covariance signals produce a meridional gradient of annual mean CO₂ concentration in the marine boundary layer that is half as strong as the signal produced by fossil fuel emissions. This rectifier effect is simulated by most global tracer transport models. However, observations to constrain the strength of these covariance signals in nature are lacking. We investigate the covariance between ecosystem carbon dioxide exchange and ABL dynamics by comparing one widely cited transport model with observations in the middle of the North American continent. We measured CO₂ flux and mixing ratio using an eddy-covariance system from a 447-m tower in northern Wisconsin, mixed layer depths using a 915-MHz boundary layer profiling radar near the tower, and vertical CO₂ profiles from aircraft in the vicinity of the tower. We find (1) that simulated and observed net daily CO₂ fluxes are similar; (2) the simulated maximum ABL depths were too shallow throughout year; (3) the simulated seasonal variability of the CO₂ mixing ratio in the lowest layer of the free troposphere is 3 ppm smaller than that inferred from a mixed layer jump model and boundary layer observations; and (4) the simulated diurnal and seasonal covariance between CO₂ flux and mixing ratio are weaker than the observed covariance. The comparison between model and observations is limited by the questionable representativeness of a single observing site and a bias towards fair weather observing conditions.

INDEX TERMS: 0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions; 3307 Meteorology and Atmospheric Dynamics: Boundary layer processes; 3322 Meteorology and Atmospheric Dynamics: Land/atmosphere interactions; 3379 Meteorology and Atmospheric Dynamics: Turbulence; KEYWORDS: terrestrial CO₂ fluxes, atmospheric boundary layer dynamics, global change

1. Introduction

[2] The influence of terrestrial CO₂ exchange on the distribution of CO₂ in the atmosphere is modulated by the dynamics of the atmospheric boundary layer (ABL). On summer days the depletion of CO₂ due to photosynthetic uptake is diluted by deep convective mixing, while at night, CO₂ from respiration accumulates near the surface in a shallow, stable ABL. Outside of the tropics, a similar covariance occurs over seasonal scales, i.e., the net ecosystem-atmosphere exchange (NEE) of CO₂ is generally negative (uptake) in summer and positive in winter, combined with deeper mixing in summer. The covariance between terrestrial CO₂ exchange and vertical mixing influences the time-mean vertical partitioning of CO₂ between the ABL and free troposphere (FT) [Denning et al., 1995].

[3] Atmospheric inversion calculations infer the distribution of surface sources and sinks from distributions of CO₂ observed at a network of air sampling stations primarily located in the marine boundary layer (MBL) [Tans et al., 1990]. Most tracer transport models [Denning et al., 1996a, 1996b; Law and Simmonds, 1996; Law and Rayner, 1999; Bousquet et al., 2000] used for these calculations predict elevated concentrations of CO₂ at MBL stations downwind of the temperate continents due to rectification of purely seasonal exchange with terrestrial biota (i.e., CO₂ exchange with a zero annual mean at each model grid cell). This rectification enhances the simulated annual mean north-
south CO₂ gradient and, since observations show only a modest north-south gradient [Tans et al., 1990; Conway et al., 1994], the difference implies a larger compensating temperate sink in the inverse calculations. The strength of this rectifier effect on the simulated annual mean Arctic-to-Antarctic difference in the MBL varies from slightly negative to more than 2.5 ppm among different transport models [Law et al., 1996] and is one of the largest sources of uncertainty in estimates of continental-scale carbon fluxes [Gurney et al., 2002, 2003]. The covariance between ecosystem CO₂ fluxes and the ABL dynamics drives the rectifier effect. Observations to constrain the strength of the rectifier effect in nature are lacking. Continuous observations of NEE of CO₂ (e.g., FLUXNET) [Baldocchi et al., 2001] combined with long-term continuous measurements of ABL structure using boundary layer profiling radar [Ecklund et al., 1988; Angevine et al., 1998] can provide the data that is needed to assess the covariance.

2. Materials and Methods

2.1. Site and Measurements

A site is located in Chequamegon National Forest in northern Wisconsin (45.95°N, 90.27°W; elevation 473 m). The region is in a heavily forested zone of low relief. The tower is a 447 m tall television transmitter surrounded by a grassy clearing of about 180 m radius. The site, instrumentation, and flux calculation methodology have been described by Bakwin et al. [1998] and Berger et al. [2001]. Three-axis sonic anemometers at 30, 122, and 396 m above ground were used to measure turbulent winds and virtual potential temperature. Air from these three levels was drawn down tubes to a trailer where three LI-COR 6262 analyzers were used to determine CO₂ and water vapor mixing ratio fluctuations at 5 Hz for eddy covariance flux measurements [Berger et al., 2001]. High-precision, 2-min mean CO₂ mixing ratios were sampled at 11, 30, 76, 122, 244, and 396 m by two LI-COR 6251 analyzers [Bakwin et al., 1998]. Measurements of the NEE fluxes are described by Davis et al. [2003].

A National Center for Atmospheric Research (NCAR) Integrated Sounding System (ISS), which includes a clear-air wind-profiling radar, a Radio Acoustic Sounding System (RASS), and a balloon-borne radiosonde system, was deployed about 8 km east of the tower from 15 March to 3 November 1998. The profiler is a sensitive 915 MHz Doppler radar that is designed to respond to fluctuations of the refractive index in clear air [Ecklund et al., 1988; White et al., 1991; Angevine et al., 1994]. The reflectivity measured by the profiler is related to the turbulence intensity, gradients of temperature and humidity, and particulates [Ottersten, 1969; Wyngaard and LeMone, 1980; White et al., 1991]. The ML depth (zₑ) is derived from the signal-to-noise ratio (SNR) recorded by the profiler [Yi et al., 2001]. The profiler can be used to measure zₑ with a time resolution of 30 min or less, a height resolution of 60 to 100 m, a minimum height of 150 m, and a maximum height of 1500 to 3000 m depending on conditions [Angevine et al., 1994]. ML depth cannot be estimated from the profiler SNR under unfavorable weather conditions such as rain, snow, or heavy clouds. The profiler is very sensitive to large cloud droplets and raindrops, resulting in a high, relatively featureless SNR over the depth of the precipitation shaft. Under these conditions, the boundary layer is often not clearly defined [Stull, 1988].

Mixed layers shallower than 400 m, which typically occur in morning, are also not well defined from the profiler SNR measurements. The CO₂ mixing ratio measurements from the tower were used to obtain zₑ when it was below 400 m. The top of the mixed layer was defined as the depth above ground to which the CO₂ mixing ratio is constant with height, provided that the net radiation is positive (warming the Earth’s surface) [Yi et al., 2001].

The stable nocturnal ABL is typically very shallow, usually less than 200 m, and was estimated from the CO₂ measurements at the tower. We defined the top of the stable ABL as the height at which CO₂ gradients first become very small [Yi et al., 2001]. The CO₂ mixing ratio measurements at the tower allowed us to estimate the stable ABL height for very stable and moderately stable conditions as defined by Mahrt et al. [1998] and Mahrt [1999] but not for weakly stable conditions when the stable ABL height often exceeds 400 m.

2.2. Estimating the CO₂ Jump

The CO₂ jump across the nocturnal inversion was determined from the difference in CO₂ mixing ratios between the nocturnal ABL and 396 m. The geometric height weighted average values were used as nocturnal ABL CO₂ mixing ratio. The nocturnal ABL height was estimated by visual examination of the CO₂ profile. We defined the top of the nocturnal ABL as the height at which the CO₂ mixing ratio was approximately equal to the mixing ratio in the residual boundary layer [Yi et al., 2001]. We assumed that each CO₂ mixing ratio measurement represents a layer bounded by the midpoint between measurement heights. These layer edges were at 0, 20.5, 53, 99, 183, and 320 m, and layer thicknesses were 20.5, 32.5, 46, 84, and 137 m, respectively. Above the 200 m level, CO₂ mixing ratios are usually constant with time under stable conditions at night (e.g., see Figure 4 of Yi et al. [2001]). Therefore the CO₂ mixing ratio at 396 m at night can be considered typical of the residual layer. With disturbed weather conditions such as rain, snow, heavy clouds, or wind, the CO₂ mixing ratios at all six levels were similar and the CO₂ jump was very small.

The CO₂ jump across the top of the ML can be estimated by the ML jump model [Tennekes, 1973; Yi et al., 2001]:

\[
\frac{d}{dt} \Delta C = \frac{\partial C}{\partial z} \frac{dz}{dt} = \frac{\partial C_{m}}{\partial t},
\]

\[
\frac{\partial C_{m}}{\partial t} = z_{e} \left[(\tau \pi)_{s} - (\tau \pi)_{i} \right],
\]

\[
(\tau \pi)_{i} = \Delta C \frac{dz}{dt},
\]

where \(C_{m} \) is the ML mean mixing ratio and \(\Delta C \) is equal to \(C_{FT} - C_{m} \). \(C_{FT} \) is the FT CO₂ concentration just above the ML. \((\tau \pi) \) is the eddy covariance flux of CO₂ (positive is an upward flux), subscript s and i refer to the surface and \(z_{e} \) respectively, and \(\partial C/\partial z \) is the mixing ratio gradient above the top of the ML. Three main approximations have been...
Patterns. Based on the tall tower observations, Yi et al. [2000] found that the relative contributions of total advection to NEE decreases with height. The monthly mean diurnal average daytime integral (from 0600 LT to 1800 LT) of total advection was estimated to be 2% of the mean diurnal average daytime integral (from 0600 LT to 1800 LT) of total advection. Synoptic vertical velocity is usually smaller than the entrainment velocity. We measured dz/dt [Yi et al., 2001], which is actually a combination of entrainment velocity and the synoptic vertical velocity. Second, advection terms in equation (2) are neglected. The vertical advection is negligible everywhere except at the ML top because ML mixing ratios are nearly uniform in the vertical under convective conditions. However, significant horizontal transport of CO$_2$ could result from spatial gradients in CO$_2$ driven by different regional land cover patterns. Based on the tall tower observations, Yi et al. [2000] found that the relative contributions of total advection to NEE decreases with height. The monthly mean diurnal average daytime integral (from 0600 LT to 1800 LT) of total advection was estimated to be 2% of the daytime integral of NEE at 30 m. Thus, we ignored advection effects under well-mixed conditions.

Combining equations (2) and (3), we get the CO$_2$ jump

$$\Delta C(t) = \frac{z_i}{dz_i/dt} \left(C_m \frac{\partial C_m}{\partial t} - \langle \tau \phi \rangle \right).$$

(4)

All terms on the right-hand side of equation (4) were measured from the tower and the ISS. The CO$_2$ mixing ratios at 11 m on the tower were used as C_m when the ML was shallow during the morning transition period ($z_i < 400$ m) and the average mixing ratios over six levels were used for the rest of the daytime ($z_i > 400$ m). The CO$_2$ fluxes measured at 30 m on the tower were used as $\langle \tau \phi \rangle$. We note that equation (4) is only valid during the period when the ML is growing and it breaks down as z_i approaches its maximum value in the afternoon ($dz_i/dt \rightarrow 0$, $\Delta C \rightarrow \infty$).

In the case of $dz_i/dt \rightarrow 0$, the solution of equation (1) can be expressed as

$$\Delta C(t) = \Delta C(t - \Delta t) - (C_m(t) - C_m(t - \Delta t)).$$

(5)

An increase in the ML mixing ratio leads to a decrease in the CO$_2$ jump. Thus when the ML reached maximum depth, the CO$_2$ jump was extrapolated with (5) from the tower mixing ratio measurements.

2.3. Direct Observations of the CO$_2$ Mixing Ratio Profile

[12] Shortly after sunrise, the ML begins to form near the ground with a relatively uniform CO$_2$ mixing ratio profile. When the ML is below 396 m, we define the CO$_2$ jump as the difference in CO$_2$ mixing ratio between the ML and 396 m [e.g., see Yi et al., 2001, Figure 4]. As seen from Figure 1, the CO$_2$ jump calculated by the jump model during the morning hours is in good agreement with the direct observations from the tower.

The CO$_2$ Budget and Rectification Airborne study (COBRA) [Gerbig et al., 2003a, 2003b] measured vertical profiles of CO$_2$, H$_2$O, and potential temperature near the tower (Figure 2), thus providing a direct measurement of the CO$_2$ jump. The radar z_i measurements were consistent with the aircraft measurements in which the ML was defined to be a layer with nearly constant potential temperature (Figure 2b). The FT CO$_2$ values estimated by the jump model are in very good agreement with the aircraft measurements (Figure 2a). However, additional aircraft profiling suggests that the ability of the jump model in equations (1)–(5) to project the surface measurements to the FT is limited and this issue is discussed later in this section.

Although only few hours were available to compare between the jump model and aircraft vertical profiles, the horizontal variability of the ML vertical profiles was clearly demonstrated by the aircraft measurements (Figure 2). These comparisons help in understanding the representativeness of the CO$_2$ jump estimated from the radar and tower measurements. Although in the ML, CO$_2$ is nearly constant with height, it varies horizontally as seen in Legs 1–2 in Figure 2a. Leg 2 may have higher ML CO$_2$ because it was near the shore of Lake Superior where there is little photosynthesis. Thus the CO$_2$ jumps computed at the WLEF tower may be influenced by local NEE of CO$_2$. The aircraft data (Figure 2) also indicate, as expected from previous studies of ABL structure, that the interface between the ML and FT is much more complicated than the simple step function assumed by the jump model [Lily, 1968; Tennekes, 1973; Mahrt and Lenschow, 1976; Deardorff, 1979].

To further test the ability of the jump model and tower observations to determine the FT CO$_2$ mixing ratio, we compared our tower-based estimates with periodic aircraft profiling campaigns, mountaintop flask observations, and marine ABL flask observations (Table 2). It was evident that the amplitude of the seasonal CO$_2$ cycle in the FT estimated from the jump model is much larger than the observed upper tropospheric seasonal amplitude. This appears to contradict the good agreement found between the morning profiles (Figure 1) and COBRA profiles (Figure 2). The simplified
jump model in equations (1)–(3) assumes that \(C_{FT} \) is constant as a function of height just above the ML. The aircraft profiles show that \(C_{FT} \) was not constant with height. The vertical CO2 gradients in the lower part of the FT were much larger than in the upper part of the FT (Figure 3). We hypothesize that the jump model calculation gave the mean CO2 mixing ratio in the lower part of FT air that is in direct contact with the ML (e.g., the upper reaches of the ABL entrainment zone). The aircraft profiles support our assertion that the CO2 jumps estimated by the jump model represent the difference between the ML and the lower FT (Figure 3). This difference was the reason why the seasonal variability of FT CO2 estimated by the jump model and predicted by General Circulation Model (GCM) coupled with the Simple Biosphere Model (SiB2) was much larger than the direct measurements of the FT CO2 mixing ratios (Table 2). The entrainment zone can be fairly deep [Kiemle et al., 1997; Davis et al., 1997], but the FT can still exhibit considerable vertical structure above the ABL (Figure 3a). As a result, jump model estimates of CO2 in the FT were not always representative of the entire FT column. In fair weather conditions when the FT CO2 mixing ratio appears fairly uniform subsidence compresses the troposphere (e.g., COBRA flights over Wisconsin), the jump model estimates appeared to capture the FT CO2 mean mixing ratios fairly well. We chose to retain all jump model FT CO2 estimates and compared these with the model-derived CO2 mixing ratios in the lowest model layer above the ABL. For the sake of brevity, we hereafter refer to the results from the jump model driven by the direct measurements as “observations” and the results from the GCM with SiB2 as “simulations.” Direct aircraft observations of FT CO2 are explicitly differentiated from jump model estimates.

3. Results and Discussions

[16] We present comparisons between observations at WLEF and modeled fields, focusing on surface fluxes, ABL depths, and the jump in CO2 between the ML and the lowest portion of the FT (as discussed above). The comparison is divided into the diurnal and seasonal averages in an effort to differentiate the temporal scales that drive the rectifier effect.

3.1. Diurnal Covariance

[17] The nocturnal CO2 jump reached a maximum magnitude in the early morning (Figure 4) because CO2 from
respiration accumulated in a shallow, stable ABL with weak mixing during the night. When the turbulent ML began to develop after sunrise, the CO₂ mixing ratio decreased rapidly owing to turbulent mixing, the entrainment of lower-CO₂ air from the above, photosynthesis, and possibly by advection [Yi et al., 2000]. Solar radiation is the driving force for both photosynthesis and turbulent convection. At the time of the diurnal maximum of the ABL depth in the growing season (typically 1800–2000 m), the ML CO₂ mixing ratio was on average 1–6 ppm lower than aloft on average (Figures 4c–4f).

[18] We compared our observations with the Colorado State University (CSU) GCM coupled with the SiB2 [Denning et al., 1996a, 1996b], which has a strong rectifier signal [Denning et al., 1999]. For all months, the ML depths calculated by the simulation were less than we observed (Figure 4) and the GCM stable ABL depths were less than or equal to the observations. Underestimates of mixing depths and flux magnitudes had opposing effects on the CO₂ jump across the ABL top. The observed nocturnal CO₂ jump exceeded that of the simulation (Figure 4) with a maximum discrepancy of about 18 ppm in July. At midday during the growing season, the observations estimated the jump in CO₂ mixing ratio across the ABL top to be, on average, 1–6 ppm, while in the simulation, it was 1–3 ppm (Figures 4c–4f). Thus the simulation underestimated the diurnal covariance.

3.2. Seasonal Covariance

[19] Seasonal covariance plays a more important role in the rectifier effect than the diurnal covariance because seasonal changes are coherent and persistent across latitude zones [Denning et al., 1996b]. To examine the seasonal covariance, we focused on the maximum daily ABL depth (from 1200 to 1600 LT) and daily integrated surface fluxes (24 hours). The day-to-day evolution of the afternoon ABL CO₂ mixing ratio reflects in part the daily integral of the surface fluxes. Rather than comparing the day-night mixing, flux, and mixing ratio differences, we contrasted the daily mean properties in the dormant season versus the growing season. Strong seasonal covariance would be characterized by shallow mixing and large respiration fluxes in dormant season and by deep mixing and large net photosynthetic fluxes in growing season. The observed seasonal distributions of maximum ABL depth, daily sum of CO₂ flux, and CO₂ jump are shown in Figure 5. The winter (December through February) ABL depth was shallowest (Figure 5a), but the largest CO₂ flux occurred in autumn (September through November) rather than in winter (Figure 5b).

[20] The simulated and observed net daily CO₂ fluxes were very similar (Figure 5b). Compared with WLEF observations, the simulated CO₂ fluxes were more positive in autumn and more negative in summer. Ecosystem respiration in the simulation was parameterized according to soil temperature and moisture and scaled to produce perfect carbon balance (NEE = 0) in the annual mean [Denning et al., 1996a]. The simulated maximum ABL depths were too shallow throughout the year (Figure 5a). Undersimulated ABL depth should enhance the magnitude of the modeled CO₂ difference between the ABL and FT. The modeled CO₂ jump showed a persistent seasonal bias as compared to our tower-based observation (Figure 5c). The winter difference between simulation and observations therefore was consistent with the forcing variables. Similar fluxes but shallower modeled mixing yielded a larger magnitude CO₂ jump across the ABL top. The summer results for the CO₂ jump, however, contradicted the shallower modeled ABL depths. This may be related to an imperfect match between the observations and model output. Our observations did not include days with cloud convection which is common during the summer months and is an important mechanism for redistributing CO₂ in the atmosphere [Hurwitz et al., 2004].

[21] Part of the discrepancy between the simulated and observed ABL thickness resulted from the definition of the ABL top in the GCM. The depth of the ABL is a prognostic variable in the model, which maintains the ABL top as a coordinate surface in order to resolve the jump in thermodynamic properties there [Suarez et al., 1983; Randall et al., 1992; Denning et al., 1996b]. When the ABL becomes very deep, the model sacrifices vertical
resolution near the surface to maintain the ability to resolve the jump. As a compromise to avoid this problem, a height of the mixed layer in the simulations reviewed here was restricted to be no deeper than 0.2 ps (100 mb) (ps is surface pressure), which is generally about 1500 m, depending on temperature. On days when the ABL is deep, buoyancy and shear forcing in the ABL produce dry convective mixing with the layer above. A larger mass of air is in contact with the surface, which might correspond with the “real” ABL, but the coordinate surface at the simulated ABL is capped.

The comparison between model and observation presented here is imperfect, and this introduces uncertainty in our conclusions. First, our observations were biased towards fair weather observing conditions. Owing to periods of poor observing conditions (rain, heavy cloud cover) and instrument failures, the measurements were available for only 40% of the deployed period of ISS. Under disturbed weather conditions the ABL may not be well defined, and we were often unable to identify the ML top using the radar or the stable ABL depth using the tower CO2 profile. In the GCM, the top of the ABL was a model coordinate surface and was always defined. Also, the sonic anemometers used for CO2 flux measurements did not operate well during rain.

Second, our observations were a point measurement, while the results of the simulation represented a grid box (4° × 5°) average value. The comparison of observed and modeled ABL depths is not likely to suffer much from this mismatch of spatial scale, but it should be noted that the GCM grid box is much larger than the footprint of the tower CO2 flux data [Yi et al., 2000; Davis et al., 2003].

4. Concluding Remarks

Ecosystem CO2 exchange and ABL mixing are correlated diurnally. Tracer transport models predict that these covariance signals produce a meridional gradient of annual mean CO2 concentration in the MBL that is half as strong as the signal produced by fossil fuel emissions [Denning et al., 1995, 1996b]. The effect of this covariance on MBL CO2 mixing ratios has been identified as the CO2 rectifier effect. It has been predicted by many inversion models [Denning et al., 1995, 1996b; Law and Simmonds, 1996; Law and Rayner, 1999; Bousquet et al., 2000; Gurney et al., 2002, 2003]. However, observations to constrain the strength of these covariance signals in nature are lacking. We examined the strengths of these covariance signals in nature by using the measurements from the eddy flux tower, boundary layer profiling radar, and aircraft and compared the observations with that simulated by the CSU GCM with SiB2 [Denning et al., 1996a, 1996b] at WLEF. We conclude that the observed diurnal and seasonal covariance between ecosystem CO2 fluxes and ABL turbulent mixing are stronger than the global coupled model simulation. However, these results are subject to significant uncertainties associated with the use of a point measurement to represent an area and a fair weather bias in the data. The structure of FT CO2 also confounds the comparison. Our study compared modeled and observed CO2 differences between the ML and the lowest part of the FT. The column mean FT CO2 mixing ratio is more relevant to the issue of the rectifier effect. Figure 3 shows that the vertical gradient in FT CO2 is relatively small in summer and large and negative in the other months. Therefore the CO2 difference between the ML and FT column mean would be more similar to that measured by the jump model in summer, but larger (more negative) in the other months. This implies that the seasonal rectifier forcing could be possibly larger than
Figure 4. Monthly mean diurnal cycle of mixed layer depth (thick dashed line for observations and long dashed line for simulation [Denning et al., 1996b]), stable layer depth (plus for observations and long dashed line for simulation) and CO₂ jump across the top of ABL (solid line with standard error bars for observations and without error bars for simulation) for 1998. The days represented in the observations are those for which we could identify the ABL top, and days when radar, CO₂ flux and mixing ratio instruments were all functioning. This represents 40% of the available days between March and October, not including June, which is absent due to missing data.
that estimated from the jump model results. Modeled column mean FT CO$_2$ was not analyzed in this study.

References

Davis, K. J., P. S. Bakwin, C. Yi, B. W. Berger, C. Zhao, R. Teclaw, and J. Isbreds (2003), The annual cycle of net CO$_2$ and H$_2$O exchange over a northern mixed forest as observed from a very tall tower, Global Change Biol., 9, 1278–1293.

P. S. Bakwin, NOAA Climate Monitoring and Diagnostics Laboratory, 325 Broadway, Boulder, CO 80305, USA. (pbakwin@comcast.net)

K. J. Davis, A. Desai, and C. Yi, Department of Meteorology, Pennsylvania State University, University Park, PA 16802, USA. (davis@ese.psu.edu; adesai@ese.psu.edu; cxyi@ese.psu.edu)

A. S. Denning and N. Zhang, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371, USA. (denning@atmos.colostate.edu; ni@denndrus.atmos.colostate.edu)

C. Gerbig and J. C. Lin, Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA. (chg@io.harvard.edu; johnlin@fas.harvard.edu)