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Abstract A new nonlinear analytical model for canopy
flow over gentle hills is presented. This model is established
based on the assumption that three major forces (pressure
gradient, Reynolds stress gradient, and nonlinear canopy
drag) within canopy are in balance for gentle hills under
neutral conditions. The momentum governing equation is
closed by the velocity-squared law. This new model has
many advantages over the model developed by Finnigan
and Belcher (Quart J Roy Meteorol Soc 130: 1–29 2004,
hereafter referred to as FB04) in predicting canopy wind
velocity profiles in forested hills in that: (1) predictions from
the new model are more realistic because surface drag
effects can be taken into account by boundary conditions,
while surface drag effects cannot be accounted for in the
algebraic equation used in the lower canopy layer in the
FB04 model; (2) the mixing length theory is not necessarily
used because it leads to a theoretical inconsistency that a
constant mixing length assumption leads to a nonconstant
mixing length prediction as in the FB04 model; and (3) the
effects of height-dependent leaf area density (a(z)) and drag
coefficient (Cd) on wind velocity can be predicted, while
both a(z) and Cd must be treated as constants in FB04
model. The nonlinear algebraic equation for momentum
transfer in the lower part of canopy used in FB04 model is
height independent, actually serving as a bottom boundary

condition for the linear differential momentum equation in
the upper canopy layer. The predicting ability of the FB04
model is largely restricted by using the height-independent
algebraic equation in the bottom canopy layer. This study
has demonstrated the success of using the velocity-squared
law as a closure scheme for momentum transfer in forested
hills in comparison with the mixing length theory used in
FB04 model thus enhancing the predicting ability of canopy
flows, keeping the theory consistent and simple, and shining
a new light into land-surface parameterization schemes in
numerical weather and climate models.

1 Introduction

The real world surface is not flat and most of it is covered by
vegetation. Analytical research into flows within and above
vegetation of a forested hill has many implications such as:
(1) improving the land surface parameterization of numeri-
cal weather prediction models (e.g., Hunt et al. 1988a, b;
Belcher et al. 1993; Kaimal and Finnigan 1994; Belcher and
Hunt 1998; Wood 2000); (2) theoretical understanding of
mechanisms behind the advection problem in eddy-flux
measurements (e.g., Goulden et al. 1996; Lee 1998; Massman
and Lee 2002; Aubinet et al. 2003; Feigenwinter et al. 2004;
Staebler and Fitzjarrald 2004; Wang et al. 2005, 2006, 2007;
Yi et al. 2005; Sun et al. 2007, 2010; Feigenwinter et al.
2008; Finnigan 2008; Kutch et al. 2008; Wang and Davis
2008; Yi et al. 2008; Yi 2009; Wang 2010; Wang and
Rotach 2010; Burns et al. 2011; Wang 2012); and (3)
modeling complex exchange between forests and atmo-
sphere (Wolfe and Thornton 2011; Wolfe et al.2011; Edburg
et al. 2010; Queck and Bernhofer 2010).

The theoretical foundation of analytical studies of air-
flows over a forested hill was formulated mainly by Jackson
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and Hunt (1975; hereafter referred to as JH75), though
improvements have been made since then (e.g., Sykes
1978; Hunt and Richards 1984; Hunt et al. 1988a, b; Hunt
and Carruthers 1990; Belcher et al. 1993; Belcher and Hunt
1998). To theoretically understand the perturbations pro-
duced by rough hills to mean flow and pressure fields,
JH75 divided an atmospheric boundary layer into two
layers; namely, a thin inner layer that is adjacent to a surface
where Reynolds stress gradients play a significant role and a
deeper outer layer where Reynolds stress gradients are neg-
ligible. With a linear approximation, JH75 derived an ana-
lytical solution of the perturbation wind field in each layer.
The predictions of JH75’s linear theory have been broadly
supported by observations (e.g., Mason and Sykes 1979;
Bradley 1980; Mason and King 1984; Taylor and Teunissen
1987; Salmon et al. 1988). Analytical solutions have been
limited to gentle hill conditions because nonlinear effects
become more significant for steeper hills.

Recent progress in analytical studies of airflows over gentle
hills covered with forest canopies was made by Finnigan and
Belcher (2004; henceforth FB04). Instead of using the rough-
ness–length parameterization to represent canopy effects,
FB04 coupled an analytical canopy model with the linear
model of Hunt et al (1988a, b) to simulate the wind field over
forested hills. They divided a canopy layer into a linear layer
in the upper part, governed by a linearized differential equa-
tion, and a nonlinear layer in the lower part, described by an
algebraic equation. The mixing length theory is used to pa-
rameterize the Reynolds stress term in both layers. It was
further assumed that all of the mixing length, leaf area density
(LAD), and drag coefficient are constant throughout the can-
opy layer. FB04model predicted that the presence of a canopy
over a hill can lead to a reduced flow speed-up near the hill
top, increased surface drag, and increased tendency for flow to
separate within the canopy. These features have been sup-
ported by numerical simulations (Wood 2000; Brown et al.
2001; Allen and Brown 2002; Ross and Vosper 2005; Dupont
et al. 2008; Ross 2008) and validated by laboratory studies
(Poggi and Katul 2007a, b, c, 2008).

Nevertheless, the assumptions used in FB04 such as
constant LAD and drag coefficient have restricted its
application in reality. Moreover, the assumption of a
constant mixing length within a canopy is not consistent
with the original mixing length theory. This is because a
mixing length (lm) must satisfy Von Karman’s rule (Von
Karman 1930; Schlichting 1960; Tennekes and Lumley

1972); lm ¼ k dU=dz
d2U=dz2

��� ���, where k is von Karman’s constant,

U is wind speed. Von Karman’s rule indicates that a
mixing length is a function of velocity distribution
(Schlichting 1960). A typical velocity distribution for a
forest canopy is S-shaped (Fons 1940; Lemon et al.
1970; Bergen 1971; Landsberg and James 1971; Oliver

1971; Shaw 1977; Meyers and Paw U 1986; Baldocchi
and Meyers 1988; Fischenich 1996; Lalic and Mihailovic
2002; Turnipseed et al. 2003; Yi et al. 2005; Yi 2008).
The mixing length of the S-shaped velocity distribution
is not constant, being minimum at the local extreme
values of the wind profile (dU/dz00, d2U/dz2≠0) and
maximum at the inflection point of the wind profile
(dU/dz≠0, d2U/dz200). These characteristics (extreme
values and inflection point) of in-canopy wind profile
are predicted by FB04 model, varying from the wind-
ward side to leeward side of a forested hill. This means
that the assumption of a constant mixing length in the
FB04 model leads to the prediction of a varying mixing
length. The fact that the mixing length is not constant within
canopy has been demonstrated by large eddy simulations
(Coceal et al. 2006; Ross 2008) and bywater tank experiments
(Poggi et al. 2007c). In addition, the no-slip condition at
ground cannot be satisfied in FB04 model, leading to unreal-
istic predictions of wind profile in the lower canopy layer.

The goal of this paper is to enhance the ability of canopy
wind predictions over forested hills by relaxing the restric-
tions and overcoming the theoretical inconsistency in the
FB04 model. The essential difference between present and
FB04 studies (Table 1) lies in the canopy flow model, in
which we use the velocity-squared law as a closure scheme
instead of the mixing length theory used in FB04. With the
new scheme, momentum transfer is governed by a single
nonlinear differential equation throughout the canopy layer,
constrained at the canopy top by the linear solution of JH75
model and at ground by the no-slip condition. Thus, knowl-
edge about how ground surface drag, varying leaf area
density, and canopy drag coefficient affect canopy flows
over forested hills can be provided by the present model.

2 Canopy flow model and solutions over a gentle hill

As in FB04, we consider the flow over a gentle hill covered
by a dense canopy. The general framework of the present
study is illustrated in Fig. 1. An atmospheric boundary layer
is divided into inner and outer regions in the vertical (JH75
and Hunt et al. 1988a, b). The inner region is further divided
into two sublayers, i.e., within and above the canopy. We
focus on the flow within the canopy and the proposed
canopy flow model is briefly described below. Details of
model assumptions and necessary formulas for canopy wind
profile calculations are provided in the Appendix.

2.1 Governing equation

Over a flat surface, momentum balance within a canopy of
height h (−h<z<0) is approximately between turbulent
stress gradient (τ) and canopy drag force (Fd; Inoue 1963;
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Yi 2008). Over a gentle and long hill, topography induced
horizontal pressure gradient (PG), vertical gradient of tur-
bulent stress, and canopy drag are in balance, with an
assumption that advection terms can be neglected as argued
in FB04. The streamwise momentum balance equation with-
in the canopy can be written as,

� PGþ @t
@z

� Fd ¼ 0; ð1Þ

with the boundary condition that both wind velocity and
stress are continuous at the canopy top (z00). As in FB04,

PG is assumed to be invariant with height. With the
parameterizations of τ and Fd used in Yi (2008, also
see appendix), Eq. 1 can be rewritten as a closed ordinary
differential equation,

�PGðxÞ þ @CdðzÞu x; zð Þ u x; zð Þj j
@z

� CdðzÞaðzÞu x; zð Þ u x; zð Þj j ¼ 0;

ð2Þ

where,Cd(z) is a canopy drag coefficient, a(z) is LAD, u(x,z) is
the horizontal wind velocity.

Table 1 Comparison of
treatments of canopy flow in this
study and FB04

Features FB04 This study

Terrain and canopy Low slope terrain H<<Lh Lh>>Lc Same

Coordinate system Displaced Same

Advection Neglected Same

Topography-induced pressure Fixed through canopy in the
vertical

Same

Balance equation Two-layer treatments Directly solve a nonlinear
equation for u, with pressure
gradient, stress gradient, and
canopy drag terms balanced

(1) Upper canopy levels No need to assume Δu<<UB

Δu<<UB is assumed. Linear
equation with three terms
balanced: pressure gradient,
stress gradient, canopy drag

(2) Lower canopy levels, stress
gradient is neglected

Turbulent stress parameterization
within canopy

Flux gradient theory with a
constant mixing length

Cd u|u|

LAD Constant with height Varied

No-slip on ground No Yes

Fig. 1 a A sketch of the
inner region (z00 to hi) over
a flat surface covered by a
horizontally-homogeneous
plant canopy (z0−h to 0) and
approximate balance equations
within and above the canopy.
h is canopy depth, hi is the
height of the inner layer top.
Above hi is the outer region. b
A sketch of wind flow over a
canopy covered hill. Fp pres-
sure gradient force, adv advec-
tion terms, H hill height, and Lh
hill half-length

Nonlinear analytical model for canopy flow over a forested hill



A general solution to the above equation can be expressed
as

CdðzÞu x; zð Þ u x; zð Þj j ¼ e
R

a z0ð Þdz0 PGðxÞ
Z

e
R

a z0 0ð Þdz0 0dz0 þ CC

� �
;

ð3Þ
where, CC is a constant to be determined by the boundary
condition. The solution suggests that the squared wind speed
of canopy flow is proportional to PG, inversely proportional to
the drag coefficient, and may have a complicated relation with
the distribution of a(z). The analytical solution is critically
dependent on solving the integral

R
aðz0Þdz0 for a given LAD

profile (Massman 1982, 1997). To compare with the solution
of the FB04 model, we first perform an analytical solution
with a constant a(z). Then we show an analytical solution for a
simple height-varying LAD distribution. Finally, the solution
for arbitrary distributions of LAD and Cd in the vertical is
discussed.

2.2 Constant LAD

We assume that both canopy LAD and drag coefficient are
constant, expressed by a0 and C0, respectively. In this case,
Eq. 3 becomes,

u x; zð Þ u x; zð Þj j ¼ �PGðxÞLc 1� exp a0zð Þ½ � þ u2hðxÞ exp a0zð Þ;
ð4Þ

where, uh(x) is the wind velocity at the top of the canopy, i.e.,
u(x, 0), and Lc01/(C0a0) is the canopy adjustment length
scale. Above the canopy, we assume that the background
wind (UB) blows from left to right, namely UB>0. Over a
gentle hill, wind perturbations above the canopy top are
small compared to UB as required by the linear solution of
JH75 and FB04 (see Appendix, Eq. 42), which is used as a
boundary condition at the canopy top. In this case, there
must be a layer immediately below the canopy top, in which
wind perturbation is still small so that u (0UB+Δu) remains
positive. In such a layer, the solution of wind velocity is,

u x; zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�PGðxÞLc 1� exp a0zð Þ½ � þ u2hðxÞ exp a0zð Þ

q
: ð5Þ

Equations 4 or 5 suggest that wind speed within the
canopy is contributed by two parts. One is related to the
topography-induced pressure gradient force. The PG force
acts as an accelerating force on the windward side of the hill
(i.e., negative PG), increasing the wind speed. In contrast,
the PG force decelerates wind on the leeward side of the hill
(i.e., positive PG), decreasing the wind speed. The other is
canopy drag effects that always cause the decay of wind
below the canopy. Deep into the canopy, the first term
increases and the second term decreases exponentially. In
cases with negative PG values, wind speed is dominated by

the PG term and approaches to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�PGðxÞLc

p
at sufficiently

deep levels within the canopy. In cases with positive PG
values, it is feasible that wind speed becomes zero at a level
(zd) when the two terms are equal in magnitude with oppo-
site signs. The level, zd (<0), is determined by

zdðxÞ ¼ 1

a0
ln

LcPGðxÞ
u2hðxÞ þ LcPGðxÞ

� �
: ð6Þ

Below zd(x), the sign of u(x, z) becomes negative (u<0). In
other words, flow separation occurs and reversed flow can be
observed. This appears only on the lee side of the hill, where
the PG force is in the opposite direction of the background
wind (i.e., PG >0). If |zd(x)| is larger than or equal to the
canopy depth, the reversed flow cannot be observed.

The height of flow separation (zd) is determined by three
factors: (1) LAD (a0), (2) wind speed at the top of canopy (uh),
and (3) the hill-induced pressure gradient. Physically, flow
reverses its direction when the momentum penetrated from the
canopy top cannot overcome the pressure gradient force with
the opposite direction of the flow. The separation height is
located near the top of the canopy when either the pressure
gradient is very strong or wind speed at the top of the canopy
is very weak u2hðxÞ << LcPGðxÞ

� 	
. In another extreme case

of u2hðxÞ >> LcPGðxÞ, the separation height is reduced to

zdðxÞ � 1

a0
ln

LcPGðxÞ
u2hðxÞ

� �
: ð7Þ

LAD plays an important role in determination of the flow
separation height. A denser canopy causes the momentum
penetrated from the canopy top to decay more rapidly with
height deep into the canopy, and hence flow separates at a
higher level. FB04 did not show a formula for zd(x), but it
can be easily derived. After setting Eq. 30 of FB04 equal to
zero, we find that the resulting FB04’s separation height
formula is the same as Eq. 7, which is a special case of
Eq. 6 in our model.

Below the separation level, wind velocity is upslope (u<0)
and Eq. 4 becomes,

u x; zð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�PGðxÞLc 1� exp a0zð Þ½ � þ u2hðxÞ exp a0zð Þ

q
: ð8Þ

With Eq. 6, the above solution can be written as,

u x; zð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGðxÞLc 1� exp a0 z� zdð Þ½ �f g

p
: ð9Þ

At sufficiently deep levels, wind velocity approaches

to � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGðxÞLc

p
and becomes uh independent.

It is noticed that wind speed values in Eqs. 5 and 9 are not
equal to zero on the ground, which is the same as that from
FB04 model and is unrealistic. This problem arises from the
constant Cd assumption, with which the ground drag effect is
not taken into account. This can be improved by imposing
large values ofCd at levels close to the ground (see Appendix).
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2.3 A simple height-dependent LAD distribution

For some scenarios of a(z), Eq. 3 can be analytically inte-
grated. For example,

aðzÞ ¼ 1

b0 zþ hð Þ þ b1
; ð10Þ

where, b0 and b1 are parameters for determining a(z). b0
is restricted, i.e., not equal to either 0 or 1. LAD mono-
tonically increases with height as b0>0 and decreases
with height as b0<0. When wind blows in the same
direction as the background wind (u(x, z)>0), the solution
of (3) is

u x; zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

b0 � 1

PG

CdðzÞaðzÞ 1� aðzÞ
að0Þ


 �1� 1
b0

 !
þ Cdð0Þu2hðxÞ

CdðzÞ
aðzÞ
að0Þ

 �� 1

b0

vuut ; ð11Þ

where the continuous boundary condition of u(x, z)at the
canopy top has been used.

By letting Eq. 11 equal to zero when PG>0, the separa-
tion level height, zd, is solved as

zdðxÞ ¼ 1

b0
að0Þ� 1

1�b0
1

að0Þ �
b0 � 1ð ÞCdð0Þu2hðxÞ

PG

� � b0
b0�1

� 1

að0Þ

8<
:

9=
;:

ð12Þ
Below zd(x), wind velocity is upslope and its analytical

solution is

u x; zð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

b0 � 1

PG

CdðzÞaðzÞ
aðzÞ
a zdð Þ

 �1� 1

b0 � 1

( )vuut : ð13Þ

These analytical solutions Eqs. 11–13 elucidate how can-
opy structure (different b0 and varying LAD) can change

flow separation height and wind velocity values, in addition
to PG, wind speed at the top of canopy, and drag coefficient,
as discussed in Section 2.2. A more detailed discussion on
canopy structure effects will be found in Section 3.

2.4 Arbitrary distributions of LAD and Cd

Although there are no general explicit and analytical solu-
tions to the integrals in Eq. 3 for all types of distributions of
LAD and Cd, approximate solutions can be found by rewrit-
ing Eq. 2 to a difference equation, e.g., using a central
difference scheme (e.g., Pielke 2002). Suppose that a cano-
py layer is divided into n equal segments in the vertical with
a spacing of Δz0h/n, the vertical coordinate of the lowest
point of the mth segment is z(m)0−mΔz, where m01 to n.
With some algebraic rearrangements of the difference equa-
tion, we have,

u2 x;�mΔzð Þ ¼ Cdð0Þu2hðxÞ
Cd �mΔzð Þ

Y0
k¼mþ1

1� bðkÞ
1þ bðkÞ�

PGΔz

Cd �mΔzð Þ
X0

k¼�mþ1

1

1þ b k þ 1ð Þ
Yk

j¼�mþ1

1� bðjÞ
1þ bðjÞ

 !" #
þ 1

1þ b mþ 1ð Þ

( );

ð14Þ

where, β(k)00.5(a(kΔz)+a((k−1)Δz))Δz. As discussed in Sec-
tions 2.2 and 2.3, the first term on the right-hand side (RHS) of
Eq. 14 represents the decay of wind speed below the top of
canopy, while the second term represents the contribution of
the topography-induced pressure gradient forcing. In cases
with a negative PG, it is impossible for the RHS of Eq. 14 to
reach zero above the ground. That is to say, flow separation
does not occur with a negative PG. In contrast, a positive PG
can cause wind direction changes to the PG force direction as

wind decays sufficiently deep into the canopy. Given a con-
stant positive PG, the separation height depends on how rap-
idly the wind from above the canopy decays with height
downward into the canopy. For a given x, one can calculate
wind speed starting fromm01 with an increment of 1. The first
level (say z(q)0−qΔz), where the RHS of Eq. 14 becomes
negative or zero, can be approximated as the flow separation
level, i.e., zd0z(q). Above |zd|, wind velocity is equal to the
square root of Eq. 14. Below zd, wind velocity is given by,

u x;�mΔzð Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGΔz

Cd �mΔzð Þ
X�q

k¼ �mþ1�qð Þ

1

1þ b k þ 1ð Þ
Yk

j¼�mþ1�q

1� bðjÞ
1þ bðjÞ

 !" #
þ 1

1þ b mþ 1ð Þ

8<
:

9=
;:

vuuut ð15Þ
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3 Applications

To demonstrate the advantages of the present model over
FB04 model, six experiments were performed (Table 2).
Suppose that a gentle hill of a sinusoidal shape (Fig. 1b)
as defined by Eq. 34, with the hill half-length, Lh0100 m,
and hill height, H010 m, is covered by a dense canopy. For
all experiments, u* is taken as 1 ms−1. LAD is assumed to be
vertically uniform in the first experiment (hereafter E1,
where “E” stands for “experiment”) in order to compare
the results from the present model with those from FB04
model. This is because FB04 model can only handle the
scenarios with vertically-uniform LAD distributions (i.e.,
constant LAD). In E2 and E3, two idealized vertical distri-
butions of LAD are assumed for illustrating the effects of
vertically-varied LAD on wind fields. In E4, the vertical
distributions of LAD and Cd, derived from observations, are
used. E5 and E6 are designed to isolate the effects of the
vertical variations in LAD and Cd on canopy wind profiles.

3.1 Constant LAD

In E1, we assume h010 m, Cd00.2, and LAD00.4 m2 m−3.
Using the formulas in the Appendix, we first calculate the
canopy adjustment length scale (Lc012.5 m), displacement
height (d05.59 m), canopy roughness length (z002.28 m),
inner region height (hi016m), middle layer height (hm056m),
and characteristic wind in the outer region (U008 ms−1). Then
the background wind is calculated with Eq. 29 and wind speed
at canopy top is calculated with Eqs. 42 and 47. Finally, wind
profiles within the canopy at different horizontal locations (x)
are calculated with Eqs. 5 and 8.

The streamline pattern simulated from the present model is
overall similar to that from FB04 model in terms of the
recirculation region and separation height on the lee side as
well as horizontal variations of hill-induced wind perturba-
tions (figures omitted). Differences of canopy flow simulated

from the two models are highlighted in Fig. 2. Figure 2a
shows that the vertical profiles of wind velocity within the
canopy at seven locations (x) derived from the two models are
in good agreement in the upper layer but not in the lower layer
near the ground. The wind profile pattern predicted by our
model is S-shaped on the windward side and C-shaped on the
leeward side; this feature is not revealed by FB04 model since
wind speed in the lower part of the canopy predicted by their
model is almost constant. The reason is because the no-slip
boundary condition can be applied to the nonlinear differential
equation in our model but it is not able to be applied to the
nonlinear algebraic equation in the FB04 model. Figure 2b
compares the profiles of kinematic stress from our model and
from the FB04 model. The two predictions are in excellent
agreement with each other at locations D (crest), A, and G
(trough). The kinematic stress predicted by the present model
is larger than that predicted by the FB04 model on the slope of
the windward side and smaller on the slope of the leeward side.
The kinematic stress predicted by the FB04 model is always
zero in the lower part of the canopy due to the constant wind
speed predicted by the nonlinear algebraic equation in the
FB04 model. The stress predictions from our model are more
rational because the predicted positive stress on the windward
side indicates momentum absorption, while the predicted neg-
ative stress on the leeward side in the recirculation region (u<
0) indicates that momentum flux changes its orientation as
wind changes its direction. In particular, the stress predicted
by the FB04model in the vicinity of z0−4m level on locations
E and F becomes unreasonably large (Fig. 2b).

3.2 Idealized distributions of height-dependent LAD

The second and third experiments (E2 and E3) are the same as
E1 except that LAD varies with height. Given that LAI is the
same as that in E1, the values of b0 and b1 in Eq. 10 are taken
as −0.2 and 3.63 m in E2, respectively, representing a LAD
distribution that increases with height from the ground to the
canopy top (dotted line in Fig. 3a). Similarly, b0 and b1 are
taken as 0.2 and 1.63 m in E3, respectively, representing a
LAD distribution that decreases with height (dashed line in
Fig. 3a). Different LAD distributions result in different values
of d, z0, hm, and U0 (Table 2). For the given u* (01 ms−1), the
mean wind profiles are different among E1, E2, and E3
(Fig. 3b). Above the canopy, wind speed in E2 is the largest
due to the largest LAD in the upper canopy. Larger LAD
values in the upper canopy causes less momentum penetrating
into the canopy, resulting in the larger wind speed above the
canopy.Within the canopy, wind speed in E2 decreases down-
ward with height more rapidly in the upper canopy than that in
E3 due to larger LAD, while it decreases more slowly in the
lower canopy due to smaller LAD. In addition, the magnitude
of the topography-induced PG in E2 is the largest due to the
largest U0 (Table 2 and Eq. 39).

Table 2 Parameters in different experiments

Experiment ID E1 E2 E3 E4 E5 E6

Canopy depth (m) 10 10 10 15 15 15

LAI 4 4 4 3.3 3.3 3.3

LAD(m2 m−3) 0.4 Increase Decrease Varied 0.22 0.22

Cd
a 0.2 0.2 0.2 Varied Varied 0.11

d (m) 5.6 3.6 8.1 4.24 2.18 7.7

z0 (m) 2.3 1.5 3.3 0.46 0.23 2.3

hi (m) 16 14 19 10 8.9 16

hm (m) 56 53 59 47 44 56

U0 (m s−1) 8 9 7.5 12 13 8

aCd near the ground (below 2 m) is treated as the log function of the
distance from the ground (see Appendix)
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Over the hill, the vertical profiles of wind velocity are
similar in shape but different in magnitude among E1, E2,
and E3 (Fig. 4). Above the canopy, differences in the wind
profiles are similar to those in the background wind profiles
(Fig. 3b), except that they vary with location due to the
horizontally varied PG. Within the canopy, differences in
wind profiles are small on the upwind side. The most
apparent difference among the three experiments lies in the
separation height on the lee side, which can be explained by
the following two aspects. Firstly, varying LAD directly
alters the drag force term and hence the momentum balance.
A larger LAD results in wind speed decreasing more rapidly
with height downward into the canopy; this is favorable for
canopy flow to separate at a higher level (e.g., E2 versus
E3). Secondly, varying LAD may change the background
wind and, therefore, indirectly affect the magnitude of the
PG force through U0 according to Eq. 39 (Table 2). On the
lee side, where the PG force is in the opposite direction of
wind, a stronger PG force decelerates flow more strongly
and can cause the wind speed to reach zero at a higher level.
In E2, both the PG force and LAD in the upper canopy are
the largest in magnitude. As a result, wind speed on the lee
side can reach zero at the highest level (Fig. 5).

3.3 Varying LAD and Cd

In E4, we use LAD and Cd derived from observations
(Fig. 6) for the canopy (h015 m) at the Niwot Ridge
AmeriFlux site (Yi et al. 2005) as an example to show

how the height-dependent distributions of Cd and LAD
affect wind profiles. LAD and Cd values at a given level
are estimated by linearly interpolating available data at
nearby points except that Cd near the ground is estimated
by the logarithm function of the distance from the ground as
described in the Appendix. For further comparison, we
conduct two more experiments (E5 and E6). In E5, LAD
is imposed to be uniformly distributed in the vertical and is
equal to the average of the varying LAD values used in E4,
while, in E6, both Cd and LAD are imposed to be uniformly
distributed in the vertical and equal to the averages of the
varying Cd and LAD values,1 respectively. Significant dif-
ferences in z0 and d are found among the three experiments
(Table 2). Parameters d and z0 are determined by LAD, Cd,
and the gradient of Cd at the canopy top (see Eqs. 32 and
33). Comparing E4 with E5 where both Cd distributions are
identical, we find that using the height-dependent LAD
results in differences in d and z0 by a factor of about 2.
Comparing E5 with E6 where both LAD distributions are
identical, we find that using the height-dependent Cd results
in differences in d by a factor of 3 and z0 by a factor of 10.
Figure 7 shows the vertical profiles of the background wind
velocities from the three experiments. The shape of the wind
profile within the canopy is significantly affected by the
vertical distributions of LAD and Cd. The wind profiles with
the height-dependent Cd are more like the “S” shape than
those with the constant Cd. With the constant LAD and Cd,

(a)

(b)

Fig. 2 a Vertical profiles of
wind velocities normalized by
the background wind speed at
the canopy top Uh. b Vertical
profiles of t

u2�
. The canopy depth

is 10 m

1 Treatment of Cd near the ground in E6 remains the same as that in E4.
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wind speed monotonically decreases with height downward
into the canopy while it can increase or remain with little
variation for the scenario with the height-dependent distri-
butions of LAD and Cd. In addition, the characteristic wind
speed (U0) values in the outer region are equal to 12, 13, and

8 ms−1 for E4, E5, and E6, respectively. As a result, the
topography-induced PG values differ in magnitude, with the
minimum in E6 and maximum in E5.

Over the hill, wind speed differences above the canopy
among the three experiments vary with location, with the
largest appearing in the hill crest and smallest in the trough
(Fig. 8). Within the canopy, the wind profiles are different in
shape and in magnitude (wind speed) at locations B and C
on the upwind side and at locations E and F on the lee side
of the hill.

On the upwind side of the hill, apparent S-shaped wind
velocity profiles are predicted within the canopy at B and C
for the scenario with the height-dependent distributions of
LAD and Cd (i.e., E4). Near the ground, wind speed is small
due to the strong drag effect exerted by the ground and
increases with height as the ground drag effect decreases.
On the lower and middle levels of the canopy, the canopy
drag force is mainly balanced by the topography-induced
PG force. In this case, a smaller LAD or Cd results in a
larger wind speed (for a given PG). This can explain why
wind speed values in the lower levels are larger than those in
the middle levels (because LAD and Cd increase with height
approximately below the level of z0−8 m; Fig. 6). In the
upper canopy, wind speed increases with height both due to

Fig. 4 Vertical profiles of wind
velocities at different locations
on the hill and the three
scenarios of LAD distributions

Fig. 5 The flow separation levels (zd) as a function of horizontal
distance from the hill crest in cases of three LAD distributions

(a)

(b)

E2 
E3 

Fig. 3 LADdistributions in E1, E2, and E3. LAD is constant in E1. LAD
varies with height in E2 and E3 based on Eq. 10, given LAI is equal to
that in E1. The long dashed line is for E3 with a00.2 and b01.63 m in
Eq. 10 and dotted line is for E2 with a0−0.2 and b03.63 m in Eq. 10. b
Vertical profiles of mean background wind speed in E1, E2, and E3
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the decreasing of Cd and LAD and due to the increasing of
momentum penetrated from the canopy top. For the scenario
with the height-dependent Cd but constant LAD (i.e., E5),
the shape of the wind profile is similar to that in E4 despite
slight differences in wind speed due to different LAD dis-
tributions. For the scenario with constant Cd and LAD (i.e.,
E6), the variation in wind velocity with height is smallest
among the three experiments. Wind speed in E6 keeps
decreasing or nearly invariant with height and, therefore,
the shape of the wind profile is least like the “S” shape; this
suggests that the vertical variation of Cd, dependent on the
distribution of LAD, plays an important role in simulating
the shape of wind profiles within the canopy.

On the lee side of the hill, the C-shaped wind profile
pattern appears in all three experiments. Main differences
among them lie in two aspects. Firstly, the flow predicted in
E4 separates at a deeper level than that in E5. This can be
explained by the direct and indirect effects of different LAD
distributions as discussed in Section 3.2. For E5 and E6 with
different Cd distributions but same LAD distributions, the
flow separation level in E5 is higher than that in E6 mainly
due to the more negative PG forcing in E5 (i.e., the indirect
effect of Cd, similar to the explanation in Section 3.2 for
LAD) causing the wind speed to reach zero at a shal-
lower level. Secondly, the variations in wind speed with
height below the separation level are different. Similar to
those on the upwind side of the hill, wind speed can
increase downwards at the lower part of canopy layer for
the height-dependent Cd scenarios (E4 and E5), while
such an increase is not apparent for the constant Cd

scenario (E6).

4 Discussion

This section examines the vertical and horizontal advec-
tion terms in the streamwise momentum equation. As an
example, analyses at x00 are made, where PG is equal
to zero for the prescribed hill according to Eq. 39. With-
in the canopy, the vertical gradient of the turbulent stress
term is,

@t
@z

¼ u2h
Lc

exp a0zð Þ; ð16Þ

and the horizontal advection term is,

u
@u

@x
¼ � 1

2

@PG

@x
Lc 1� exp a0zð Þ½ � þ 1

2

@u2h
@x

exp a0zð Þ: ð17Þ

Near the canopy top (z~0), Eq. 17 is dominated by the
second term on RHS because exp(a0 z) is close to 1. In this
case, the magnitude of the horizontal advection term is small
compared to that of the vertical gradient of the turbulent
stress if Lc<<Lh. Deep into the canopy (z<0), the magnitude
of the stress gradient decreases exponentially (see Eq. 16),
while the magnitude of the first term on RHS of Eq. 17
increases. To find the level (zc) where both Eqs. 16 and 17
have the same magnitude, we equate Eq. 16 to the first term
on RHS of Eq. 17 and have

zc ¼ � 1

a0
ln 1þ 32

p3


 �
u3h
U 2

0


 �
L3

HL2c


 �� �
: ð18Þ

That is to say, the horizontal advection term can be
neglected only for levels far above |zc|.

Fig. 6 a Distribution of Cd with height within the canopy derived from
observations (cross symbols) at the Niwot Ridge AmeriFlux site in the
Rocky Mountains of Colorado (Yi et al. 2005). Cd near the ground is
derived from the logarithm function in Appendix (dashed line). b
LAD. Cd profile was interpolated based on observed data at a few
levels (Yi et al. 2005)

Fig. 7 Background wind profiles for three scenarios of variations of
Cd and LAD with height (E4, E5, and E6 in Table 2)
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Based on the continuity equation, the vertical veloc-
ity at a given z (<0, within the canopy) is given by w x; zð Þ ¼
� Rz

�h

@u x;z0ð Þ
@x dz0. With some algebra, the vertical advection term

can be written as,

w @u
@z ¼ Lc

2
@PG
@x exp a0h

2

� 	� exp � a0z
2

� 	� 
exp a0z

2

� 	
;

þ uh
@uh
@x exp a0z

2

� 	� exp � a0h
2

� 	� 
exp a0z

2

� 	 ð19Þ

The second term on RHS of Eq. 19 is smaller than Eq. 16
in magnitude if Lh>>Lc. Comparing the first term on RHS
of Eq. 19 with Eq. 16, the following relation needs to be
satisfied so that the vertical advection term is smaller than
the stress gradient term in magnitude,

z >
2

a0
ln

p3

32

U 2
0

u2h


 �
HLc
L3


 �
exp

a0h

2


 �
� 1


 �� �
: ð20Þ

Letting z0−h, we can find an approximate value of the
maximum canopy depth (hcm) so that the vertical advection
term can be smaller than the stress gradient term in magni-
tude throughout the canopy layer,

hcm � 1

a0
ln

32

p3
u2h
U 2

0


 �
L3

HL2
c


 �
þ 1

� �
; ð21Þ

Equations 18 and 21 are consistent and suggest that
advection might be important for tall canopies.

5 Summary

A nonlinear canopy flow model is proposed to solve wind
profiles within a dense canopy over a gentle hill. Major
assumptions made in this study include: (1) terrain slope is
gentle (H<<Lh) and the canopy adjustment length scale is
small compared to Lh; (2) topography-induced pressure per-
turbation is in opposite phase with the hill surface and remains
invariant through the inner boundary layer at a given location;
and (3) the advection terms are neglected in the momentum
equation within the canopy but remained above the canopy.

Compared with the FB04 model, more features of in-
canopy flows over a gentle hill can be analytically derived

from the new model. Major advantages are summarized
below.

1. A consistent physical model. Canopy flow over a gentle
forested hill is described by a single nonlinear differen-
tial equation with the balance of three forces: canopy
drag, topography-induced pressure gradient, and turbu-
lent stress gradient. This nonlinear differential equation
is closed by the velocity-square law as a parameteriza-
tion scheme. The physical inconsistency generated by
using the mixing length theory in the FB04 model, i.e., a
constant mixing length assumption leading to a varying
mixing length prediction, is avoided. The effect of sur-
face drag can be taken into account by a no-slip bound-
ary condition in our model. Thus, our model prediction
of S-shaped wind profiles on the windward side and
C-shaped wind profiles on the leeward side (Fig. 8) are
more realistic and close to observations from laboratory
experiments (Poggi et al. 2008). The nonlinear algebraic
equation for momentum transfer in the lower part of the
canopy used in FB04 model is height independent,
actually serving as a bottom boundary condition for the
linear differential momentum equation in the upper
canopy layer. The predicting ability of FB04 model is
largely restricted by using the height-independent
algebraic equation in the bottom canopy layer.

2. Flow separation height. The dependence of the flow
separation height on LAD, wind speed at top of canopy,
and the perturbation pressure gradient is predicted by
the present nonlinear model. The separation height is a
result of the competition between u2h and LcPG. The
separation level is closer to the top of canopy with a
larger LcPG. The separation height formula derived
from the FB04 model is a special case (LcPG >> u2h )
of our model predictions.

3. Effects of height-dependent LAD and Cd. The present
nonlinear model can handle the scenarios of height-
dependent LAD and Cd distributions, while FB04 mod-
el cannot. Our model elucidates that varying LAD and
Cd in the vertical affect canopy flows in terms of mag-
nitude and distribution of wind velocity as well as flow
separation height through directly altering the drag ef-
fect and the canopy flow momentum balance. Varying

Fig. 8 Vertical profiles of wind
velocities at different locations
for three scenarios (E4, E5, and
E6 in Table 2) of different
variations of Cd and LAD with
height. Shaded canopy layer,
lighter colors smaller LAD
values
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LAD and Cd also have a large impact on the background
wind distribution (Fig. 7), particularly on the characteris-
tic wind velocity (U0) in the outer region. Because the
perturbation pressure gradient in the inner region is for-
mulated as a function of U0, canopy flow momentum
balance can be altered indirectly by varying LAD and Cd.

This study has demonstrated the advantages of using the
velocity-squared law as a closure scheme for canopy momen-
tum transfer in forested hills over using the mixing length
theory in FB04 model. The success of using the velocity-
squared law as a closure in enhancing predicting ability of
canopy flows, keeping theory consistent and simple, has great
promise to extend the current model to arbitrary terrain. This
canopy model can be applied to parameterizing drag effects
and dispersion of scalars due to complex flow induced by
canopies on subgrid scales in large-scale models, replacing the
commonly-used canopy roughness parameterization in most
models.
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Appendix

Wind over a flat forested surface

Over a flat forested surface, the turbulent stress in the layer
above the canopy (Fig. 1a) is governed (Sutton 1953;
Wyngaard 1973; Yi 2008) by

@tB
@z

� 0; ð22Þ

where tB ¼ �u0w0 and is the kinematic turbulent stress,
u′ and w′ are the fluctuations of velocity components in
the horizontal and vertical, respectively. The mixing
length model, in which

tBðzÞ ¼ k zþ dð Þ @UB

@z


 �2

; ð23Þ

is valid in this layer, where d is the displacement height
associated with the canopy and the origin of the vertical
coordinate is taken at the canopy top. Based on (23), the mean
velocity profile, UB, can be derived from (22), i.e,

UBðzÞ ¼ u�
k

ln
zþ d

z0


 �
; ð24Þ

where, z0 is the roughness length of the canopy, u* is the
friction velocity.

Within the canopy layer (Fig 1a, z0−h to 0, where h is
the canopy depth), according to the hypothesis in Yi (2008),
the governing equation of the kinematic turbulent stress for
a dense canopy can be given by

@tBðzÞ
@z

¼ Fd � aðzÞtBðzÞ; ð25Þ

where a(z) is LAD and Fd is the drag forcing exerted by the
canopy. In Eq. 25, we have assumed that the drag on flow
with a dense canopy is attributed largely to canopy elements
except near the ground, i.e.,

tBðzÞ ¼ CdðzÞU 2
BðzÞ; ð26Þ

where, Cd (z) is a bulk drag coefficient and is a function of
height and canopy morphology. The analytical solution of
the kinematic turbulent stress derived from Eq. 25 is

tBðzÞ ¼ tBð0Þe� LAI�LðzÞð Þ; ð27Þ
where, tBð0Þ ¼ �u0w0ð0Þ ¼ u2� is the kinematic turbulent
stress at the canopy top, LAI is the leaf area index, and

LðzÞ ¼
Z z

�h
a z0ð Þdz0; ð28Þ

is the cumulative leaf area per unit ground area below height
z. Equation 27 indicates that the turbulent stress can be
predicted by LAD profile alone, which is in excellent agree-
ment with observations (Yi 2008).

The mean wind profile within the canopy can be derived
from Eqs. 26 and 27 as

UBðzÞ ¼ Uh
Cdð0Þ
CdðzÞ


 �1
2

e�
1
2 LAI�LðzÞð Þ; ð29Þ

where, Uh is the wind speed at the top of canopy.
Assuming that mean wind velocity and shear stress are

continuous at the canopy top (z00), i.e., wind speed and its
derivative with respect to z from (29) at the canopy top are
equal to those from (24), and the shear stress from (27) at z0
0 is equal to that from (23), we have

u2� ¼ Cdð0ÞU 2
h ; ð30Þ

Uh ¼ u�
k

ln
d

z0


 �
; ð31Þ

d ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
Cdð0Þ

p
k � 1

Cdð0Þ
@Cdð0Þ
@z þ að0Þ

h i ; ð32Þ

z0 ¼ d exp � kffiffiffiffiffiffiffiffiffiffiffiffi
Cdð0Þ

p
 !

ð33Þ
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If both a(z) and Cd (z) are constant, Eqs. 32 and 33 are
reduced to those in Eq. 6 of FB04.

Wind above the canopy over a gentle hill

As in FB04, the shape of a sinusoidal hill (Fig. 1b) is
described in the rectangular coordinate system (X, Z) as

Zs ¼ 1

2
H cos kXð Þ � h ð34Þ

where, Zs is the surface height, H is the hill height, k is equal
to π/(2Lh), Lh is the hill half-length.

To obtain an analytical solution, two assumptions about
the prescribed hill are made. First, the hill slope is suffi-
ciently low, and perturbations to the background wind (UB)
above the canopy can be solved with linearized equations.
Second, the hill is long enough. This means that Lh should
be greater than 2Lc (Poggi et al. 2008), where Lc is a canopy
adjustment length scale which is equal to 1/(Cd0a0), Cd0 and
a0 are the characteristic values for the canopy drag coeffi-
cient and LAD, respectively. In this case, the advection
terms in the momentum equation may be negligible for a
dense canopy over gentle terrain. This assumption has been
supported by numerical experiments (Ross and Vosper
2005).

The same displaced coordinate system as in FB04 is
used. The displaced (x, z) and the rectangular (X, Z) coordi-
nate systems are related by,

x ¼ X þ H

2
sin kXð Þe�kZ ; ð35Þ

z ¼ Z � H

2
cos kXð Þe�kZ : ð36Þ

with this displaced (streamline) coordinate system, extra
terms appear in the momentum equations (compared
with those in a rectangular coordinate system), which
are O(H2/Lh

2) or smaller and, hence, may be negligible
for the low slope hill (see FB04 for details). As a result,

the streamwise (x direction) momentum equation can be
written as,

u
@u

@x
þ w

@u

@z
¼ � @p

@x
þ @t

@z
ð37Þ

where, u and w are the wind components in the x and z
directions; receptively, p is the kinematic pressure, τ is
the kinematic turbulent shear stress above the canopy,
which is parameterized using the mixing length theory.

Under neutral conditions, the pressure perturbation in the
inner region induced by the gentle sinusoidal hill is repre-
sented by

ΔpðxÞ ¼ � 1

2
U2

0Hk exp ikxð Þ; ð38Þ
(Jackson and Hunt 1975; Finnigan and Belcher 2004) and
the horizontal PG forcing, driving the flow throughout the
depth of the inner region (and canopy), is

PG ¼ Re
@Δp

@x


 �
¼ 1

2
U2

0Hk
2 sin kxð Þ; ð39Þ

where, U0 is the characteristic wind velocity in the outer
region and is estimated as the background wind at the
middle layer height hm. According to Hunt et al. (1988a, b),
hm is given by,

hm
Lh

ln hm=z0ð Þð Þ1=2 ¼ 1; ð40Þ

provided that Lh is less than the boundary layer depth. The
height of the inner region, hi, is defined by,

hi
Lh

ln hi=z0ð Þ ¼ 2k2: ð41Þ

Assuming that the wind perturbation induced by terrain is
small compared to the background wind (i.e., wind over the
corresponding flat surface), Eq. 37 can be linearized. The
resulting approximate solution for the streamwise velocity
in the inner region above the canopy is,

u x; zð Þ ¼ UBðzÞ þΔu x; zð Þ; ð42Þ
where,

Δuðx; zÞ ¼ Re � ΔpðxÞ
UBðhiÞ 1þ d 1� lnðzþ d

hi
Þ � cK0ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ikLh

zþ d

hi

s
Þ

 !" #( )
; ð43Þ

δ01/ln(hi/z0), and K0 is the modified Bessel function of
order zero.The turbulent stress is,

t x; zð Þ ¼ tB zð Þ þΔt x; zð Þ; ð44Þ
where

Δt x; zð Þ ¼ 2ku� zþ dð Þ @Δu x; zð Þ
@z

: ð45Þ

The integration constant c is determined by coupling
(42) and (43) to the solutions for flow within the
canopy at z00 (canopy top). Assuming that turbulent
stress and velocity are continuous at z00, respectively,
we have,

Cdð0Þ UBð0Þ þΔu x; 0ð Þ½ �2 ¼ tBð0Þ þΔt x; 0ð Þ: ð46Þ
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It is noticed that the exact value of constant c (that
should be independent of position x and z) may not be
achieved because the wind speed perturbation above the
canopy is linear in PG (a function of x) while it is
nonlinear within the canopy. This is due to different
simplifications of the governing equation above and with-
in the canopy. An approximate solution is provided here.
Since the velocity perturbation is small compared with
UB, the left side of the above equation can be approximated as
Cdð0Þ U 2

B ð0Þ þ 2UBð0ÞΔu x; 0ð Þ� 
. Substituting (23), (24),

(43), and (45) into (46), we have,

c ¼ �Cdð0ÞUBð0ÞUB hið Þ 1þ 1n hi=z0ð Þ � 1n d=hið Þ½ � � u2�1n hi=z0ð Þ
u2�d @K0ðgÞ @z=ð Þ1n hi z0=ð Þ � Cdð0ÞUBð0ÞUB hið ÞK0ðgÞ ;

ð47Þ

where g ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ikLh zþd

hi

q
. With the above approximate value of

c, the resulting vertical profiles of wind and turbulent stress
are approximately continuous but may not be smooth at the
canopy top in some locations (i.e., their first derivatives with
respect to z are not continuous at z00).

Cd near the ground

For the no-canopy case under a neutrally stratified atmo-
sphere, the drag coefficient is given by

CdðzÞ ¼ k

1n z zg0
�� 	

" #2
; ð48Þ

where, zg0 is the roughness length of the ground. Equation 48
indicates that Cd is infinite on the ground and decreases
dramatically with height near the ground. Variations in Cd

are smaller at higher levels. For example, variation in Cd is
smaller than 0.03 for z between 10zg0 and 10

3zg0. To account
for significant variations in Cd near the ground, where the
drag effect exerted by the ground is superior to that by
canopy, we assume that Cd follows (48) below a level zL.
Thus, we can rewrite (48) as

CdðzÞ ¼ Cd zLð Þ 1n zL zg0
�� 	

1n z zg0
�� 	

 !2

; ð49Þ

where, Cd (zL)is the drag coefficient at zL and zg0 is taken to
be 0.1 m in the study.
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