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Abstract. We give a new proof of Beurling’s result related to the equality of the extremal
length and the Dirichlet integral of solution of a mixed Dirichlet-Neuman problem.
Our approach is influenced by Gehring’s work in �3 space. Also, some generalizations of

Gehring’s result are presented.
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Introduction

Beurling proved the following result (see Ahlfors [1]):

Theorem 0.1. (Beurling’s theorem) Let Ω be a region in the complex plane
bounded by a finite number of analytic Jordan curves, let E0 and E1 be disjoint and

consist of a finite number of closed arcs or curves in the boundary of Ω. Then the
extremal distance dΩ(E0, E1) is the reciprocal of the Dirichlet integral

D(u) =
∫∫

Ω
(u2x + u2y) dxdy,

where u satisfies

(i) u is bounded and harmonic in Ω,

(ii) u has a continous extension to Ω∪E◦
0 ∪E◦

1 , and u = 0 on E0 and u = 1 on E1,

(iii) the normal derivative ∂u
∂n exists and vanishes on C◦ (C denotes the full boundary

of Ω, C◦ = C − (E0 ∪E1), and E◦
0 and E◦

1 denote the relative interiors of E0 and E1
as subsets of C).
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The proof is based on two important ingredients:

1) existence of a solution of a mixed Dirichlet-Neuman problem (we denote it
by u),
2) decomposition of the domain to rings and quadrilateral subdomains using, in

fact, the orthogonal and vertical trajectories of the quadratic differential defined
by u.

For the theory of trajectories of holomorphic quadratic differentials see Gardiner
[7] and Strebel [5].

Our first purpose was to give a more elementary proof of this result (that is,
with no use of these two subjects), using a minimizing sequence (see for example

Courant’s book [6]), and to derive some equalities not contained in the proof of
Beurling’s theorem.

During our work on this problem we became aware of Gehring’s papers ([2], [3]),
which strongly influenced our research.

In [2] and [3] Gehring proved that Väisälä’s definition of extremal distance between
E0 and E1 in Ω (see [9]) is essentially equivalent to Dirichlet’s integral definition due

to Loewner (see [10]) if Ω is a ring domain in �3 , and E0 and E1 are boundary
components of Ω (cf. also [4]). Gehring used this result to study quasiconformal

mappings in space.
We generalize this result to the setting of smooth domains in �n . An application

of this result gives a short proof of Beurling’s Theorem.
As we understand, there are additional technical difficulties if we work with general

domains instead of ring domains. Because of that, we need Lemma 2.1.

1. Notation

Definition 1.1. Let Ω be an open set in �n and Γ a set whose elements γ are
rectifiable arcs in Ω. Let � be a nonnegative Borel measurable function in Ω (such �

we will call a metric). We can define the �-length of γ by

L(γ, �) =
∫

γ

� |dx|,

the �-volume of Ω as

V (Ω, �) =
∫

Ω
�n dV (x),

where dV is the n-dimensional Lebesgue measure in �n , and theminimum length of Γ
by L(Γ, �) = inf

γ∈Γ
L(γ, �). The modulus of Γ in Ω is defined by modΩ(Γ) = inf

�

V (Ω,�)
L(Γ,�)n

where � is subject to the condition 0 < V (Ω, �) < ∞. The extremal length of Γ in Ω
is defined as ΛΩ(Γ) = modΩ(Γ)

1
1−n .
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Definition 1.2. Let Ω be an open set in �n , and let E0, E1 be two sets in the

closure of Ω. Take Γ to be the set of all connected arcs in Ω which join E0 and E1,
i.e. each γ ∈ Γ has one endpoint in E0 and one in E1, and all other points of γ are
in Ω. The extremal length Λ(Γ) is called the extremal distance of E0 and E1 in Ω,

and we denote it by dΩ(E0, E1).

Now, let Ω be a bounded region whose boundary consists of a finite number of C1

hypersurfaces, and E0, E1 are disjoint, and each is a finite union of closed hypersur-

faces contained in the boundary of Ω. Then we define the conformal n-capacity of
Ω as

C[Ω, E0, E1] = inf
u

∫

Ω
|∇u|n dV (x),

where the infimum is taken over all functions u : Ω → � which are differentiable in
Ω, continuous in Ω and have boundary values 0 on E0 and 1 on E1.

From now on let Γ be the family of arcs in Ω which join E0 and E1.

Definition 1.3. If u is continuous and ACL in Ω, and u has boundary values
0 on E0 and 1 on E1, we say that u is an admissible function for the domain Ω with
respect to E0 and E1 and denote it by u ∈ E(Ω, E0, E1).

2. Extremal distance and conformal capacity

In this section we want to prove that

dΩ(E0, E1) = C[Ω, E0, E1]
1
1−n .

Lemma 2.1. Let f be a metric in Ω and V (Ω, f) < ∞. Then there exists a
neighborhood U of ∂Ω, a metric f̃ on U , and a diffeomorphism A of U onto itself

such that

i) f̃ = f on U
⋂
Ω = U ′,

ii) A is the identity on ∂Ω and A(U ′) = U ′′, where U ′′ = U
⋂
Ωc,

iii) for every rectifiable curve γ in U ′′ we have

L(γ, f̃) � L(A(γ), f),

iv) V (U ′′, f̃) � K V (U ′, f), where K is a finite constant,

v) K and U do not depend on f .
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�����. The Tubular theorem (see [8]) yields that there exists a neighborhood

U of ∂Ω such that there exists a diffeomorphism H from U onto (−1, 1)× ∂Ω and
H(x) = (0, x) for x ∈ ∂Ω. For U small enough, we have for the Jacobian JH of
H that 0 < m < |JH | < M < ∞. Let S be the mapping from (−1, 1) × ∂Ω onto

itself defined as S((t, x)) = (−t, x). Define A as A = H−1 ◦ S ◦H . We obtain that
A ◦A = id and A(U ′) = U ′′. For the Jacobian JA of A we have m

M < |JA| < M
m , and

it folows that |A′(x)|n � K |JA(x)| for some K < +∞.
Let now x be from U ′′. Define f̃(x) as f̃(x) = f(A(x)) |A′(x)|. Then for a

rectifiable curve γ in U ′′ we have
∫

γ

f̃(x) |dx| =
∫

γ

f(A(x)) |A′(x)| |dx| �
∫

A(γ)
f(y) |dy|.

We also conclude that
∫

U ′′
f̃n(x) dV (x) =

∫

U ′′
fn(A(x)) |A′(x)|n dV (x)

� K

∫

U ′′
fn(A(x)) |JA(x)| dV (x) = K

∫

U ′
fn(y) dV (y).

�

From now on, we suppose that any metric f is defined in some neighborhood of
the domain Ω (namely, Ω∗ = Ω

⋃
U), and that we have a diffeomorpfism A of each

outside boundary strip small enough onto an appropriate inside boundary strip.

Lemma 2.2. Let Sr be a spherical surface of radius r, and let f be a metric on

Sr. Then each pair of points P and Q on Sr can be joined by a circular arc α ⊂ Sr

such that (∫

α

f(x) |dx|
)n

� Ar

∫

Sr

fn(x) dσr(x),

where dσr is the Lebesgue measure on Sr and A is a constant depending only on n.

�����. Let d(P, Q) = inf
β
(L(β, f)), where infimum is taken over all circular arcs

on Sr which join the points P and Q. We suppose that this infimum is positive (the

case when it is zero is left to the reader). Then there exists a circular arc α such
that L(α, f) � 2 d(P, Q).

Without loss of generality, we can assume that r = 1 and P = (0, 0, . . . , 0, 1), and
denote �1 by �.

Now we map � stereographically by p onto Z = �n−1 . Then P corresponds to ∞,
Q to some point a, and hence we obtain

d(P, Q) � L(β, f) =
∫

β

f(x) |dx| =
∫

β′
f(y)

2|dy|
1 + |y|2 ,
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where β is a circular arc joining P and Q, and β′ = p(β). Then β′ is the straight

line joining a and∞, i.e. β′(t) = a+ t v, where v ∈ �n−2 = {x ∈ �n−1 : |x| = 1} and
t goes from 0 to +∞. Hence

d(P, Q) �
∫ +∞

0
f(y)

2 dt
1 + |y|2 , y = a+ t v.

Integrating with respect to v ∈ �n−2 and applying Fubini’s theorem we conclude

d(P, Q) � 2
σn−2

∫

�n−2

(∫ +∞

0

f(y) dt
1 + |y|2

)
dσ(v) =

2
σn−2

∫

Z

f(y) dV (y)
|y − a|n−2(1 + |y|2) ,

where σn−2 is the n−2 dimensional Lebesgue volume of �n−2. By Hölder’s inequality

we see that the last itegral on the right hand side is majorized by

A
1
n

2

(∫

Z

fn(y)
dV (y)

(1 + |y|2)n−1
) 1

n

=
A
1
n

2

(∫

S

fn(x) dσ(x)

) 1
n

,

where dV is the Lebesgue measure in �n−1 and dσ = dσ1, and

A
1
n =

4
σn−2

sup
a∈Z

(∫

Z

dV (y)

|y − a|
n(n−2)

n−1 (1 + |y|2) 1
n−1

)n−1
n

.

We leave it to the reader to verify that A is finite.

Then we conclude that
(∫

α
f(x) |dx|

)n � A
∫

S
fn(x) dσ(x). �

Lemma 2.3. Let β be a rectifiable curve in Ω whose one endpoint A0 is in E0

and the other A1 in E1. Let f be any metric in Ω. Then for each a > 0 there exists
b > 0 such that, if we translate the curve β by a vector t, |t| < b (notation βt), then

∫

βt

f |dx| � L(Γ, f)− a,

where Γ is the family of all rectifiable Jordan arcs joining E0 and E1 inside Ω.

Remark. If we work with a ring domain, where E0 and E1 are boundary com-
ponents, then, if there is part of the curve βt outside Ω then βt must intersect the

corresponding boundary component, and we can choose the appropriate part of βt

which joins components (see [3] and [4]).

As we understand, in general we need an additional consideration because there
is a possibility that βt has a part outside Ω without intersection with E0 or E1.
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�����. Fix a > 0 and choose ε > 0 such that ε = an ln 2
2nA . There exists b > 0

such that

(i) the distance between E0 and E1 is greater than 4b,

(ii) the diameter of each component of E0 and E1 is greater than 4b,

(iii)
∫∫

|x−y|<2b fn dV (x) < ε for each y ∈ Ω (in fact, µ(A) =
∫

A
fn dV is an ab-

solutely continuous measure with respect to the Lebesgue measure),

(iv) the outside boundary strip V ′′ is more than 4b thick.

By the Fubini theorem we have

∫

b<|x−y|<2b
fn(x) dV (x) =

∫ 2b

b

dr

r

∫

Sr

rfn dσr,

where Sr is the sphere of radius r with center at y.

So, then there exists r0 ∈ (b, 2b) such that

r0

∫

Sr0

fn dσr0

∫ 2b

b

dr

r
= r0 ln 2

∫

Sr0

fn dσr0 < ε,

i.e.

Ar0

∫

Sr0

fn dσr0 <
Aε

ln 2
=

an

2n
.

If we apply the above argument to y = A0 then there exists r0 ∈ (b, 2b) such that

Ar0

∫

Sr0

fn dσr0 <
an

2n
.

Let B0 ∈ Sr0 ∩ βt and T0 ∈ Sr0 ∩E0 (these intersections exist because the diameters

of βt and the components of E0 are greater than 4b). Then by Lemma 2.2 we can
choose an arc α0 on Sr0 joining T0 and B0 such that L(α0, f) < a

2 .

In a similar way we can find a sphere Sr1 with center at A1 and radius r1 ∈ (b, 2b),
and choose a curve α1 which joins the point B1 of the curve βt and the point T1 on

E1, such that L(α, f) < a
2 .

From the arc α0+βt+α1 we choose a subarc γ which joins E0 and E1. Of course,

γ is in Ω∗ (which is a neighborhood of Ω). Every subarc of γ which is not in Ω can
be mapped by A to be in Ω (we obtain a new arc γ

′
). Because γ

′ ∈ Γ and by Lemma
2.1 we have

(1)
∫

γ

f |dx| �
∫

γ′
f |dx| � L(Γ, f)
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and by (1) we conclude
∫

βt

f |dx| �
∫

γ

f |dx| −
∫

α0

f |dx| −
∫

α1

f |dx|

� L(Γ, f)− a

2
− a

2
= L(Γ, f)− a,

which yields the desired conclusion. �

Proposition 2.1. Under the above conditions we have

modΩ(Γ) = dΩ(E0, E1)
1−n = inf

g

V (Ω, g)
L(Ω, g)n

,

where the infimum is taken over all continuous metrics g in Ω.

�����. Suppose that 0 < a < 1 and f is any metric defined in Ω. Choose b as

in Lemma 2.3.
Define g by

g(x) =
1

m(Ub)

∫

Ub

f(x+ y) dV (y),

where Ub = {x : |x| < b}.
Then g is bounded and continuous. By Fubini’s theorem for any β ∈ Γ we have

∫

β

g |dx| =
∫

β

(
1

m(Ub)

∫

Ub

f(x+ y) dV (y)

)
|dx|(2)

=
1

m(Ub)

∫

Ub

(∫

βy

f(x)|dx|
)
dV (y),

where βy denotes the translation of β through the vector y.
Now Lemma 2.3 implies that

∫
βy

f |dx| � L(Γ, f)− a for each |y| < b, and we have

by (2)

(3) L(β, g) =
∫

β

g |dx| � L(Γ, f)− a,

and if we take the infimum in (3) over all such β, we obtain

(4) L(Γ, g) � L(Γ, f)− a.

Further, by Jensen’s inequality we have

V (Ω, g) =
∫

Ω
gn(x) dV (x) � 1

m(Ub)

∫

Ub

∫

Ω
fn(x+ y) dV (x) dV (y)(5)

�
∫

Ωb

fn(x) dV (x) = V (Ωb, f),
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where Ωb is a b-neighborhood of Ω, and, by Lemma 2.1, V (Ωb, f) → V (Ω, f) when

b → 0. By (4) and (5) we have

(6)
V (Ω, g)
L(Γ, g)n

� V (Ωb, f)
(L(Γ, f)− a)n

→ V (Ω, f)
L(Γ, f)n

when a → 0. From (6) we easily obtain the desired conclusion. �

Proposition 2.2. Under the above conditions we have

inf
g

V (Ω, g)
L(Γ, g)n

= inf
h

V (Ω, h)
L(Γ, h)n

,

where g is any continuous metric and h is a metric from C∞(Ω).

�����. Since g could be defined in a neighborhood Ω∗ of Ω then g can be

aproximated by nonnegative C∞-functions uniformly in the whole Ω. Let hk ⇒ g in
Ω when k →∞, hk ∈ C∞(Ω∗). Then

V (Ω, hk)→ V (Ω, g),

and L(β, hk)→ L(β, g) for all β ∈ Γ, and also

L(Γ, hk)→ L(Γ, g), k →∞.

Hence
V (Ω, hk)
L(Γ, hk)n

→ V (Ω, g)
L(Γ, g)n

, k →∞,

and we have the desired conclusion. �

Proposition 2.3. Under the above conditions we have

inf
h

V (Ω, h)
L(Γ, h)n

= inf
u

∫

Ω
|∇u|n dV (x),

where h is any C∞-metric and u ∈ E(Ω, E0, E1).

�����. We can define a function m by

m(x) = inf
β

∫

β

h(y) |dy|

and u by

u(x) = min
(
1,

m(x)
L(Γ, h)

)
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for each x ∈ Ω, where β is any Jordan arc joining x and E0 inside Ω. Now, u

satisfies the uniform Lipschitz condition and u = 0 on E0 and u = 1 on E1. Hence,
u ∈ E(Ω, E0, E1) and since |∇u| � h

L(Γ,h) a.e. in Ω we have

∫

Ω
|∇u|n dV (x) � 1

(L(Γ, h))n

∫

Ω
hn dV (x) =

V (Ω, h)
L(Γ, h)n

.

We have proved the proposition. �

Proposition 2.4. Under the above conditions we have

(7) C[Ω, E0, E1] = inf
u

∫

Ω
|∇u|n dV (x),

where the infimum is taken over all u ∈ E(Ω, E0, E1).

�����. For u ∈ E(Ω, E0, E1) one can conclude that u can be extended to a
neighborhood Ω∗ of Ω such that u remains continuous and ACL. We may assume

that |∇u| is Ln-integrable over Ω∗. Next fix 0 < a < 1
2 and let

(8) v =





0, if u < a

u− a

1− 2a, if a � u � 1− a

1, if 1− a < u

on Ω.

The set where a � u � 1 − a is a bounded subset of �n and lies at a distance b

from E0 ∪ E1. Let

ω(x) =
1

m(Uc)

∫

Uc

v(x+ y) dV (y),

where c < b.

This function is continuously differentiable in Ω and has boundary values 0 on E0

and 1 on E1. From (8) we see that v is ACL everywhere and by Hölder’s inequality
we obtain that |∇v| is Ln-integrable over each compact set. Hence, we can apply

Fubini’s theorem to conclude that

∇ω(x) =
1

m(Uc)

∫

Uc

∇v(x + y) dV (y)

for each x ∈ Ω. Then applying Jensen’s inequality we obtain

∫

Ω
|∇ω(x)|n dV (x) � 1

m(Uc)

∫

Uc

∫

Ω
|∇v(x + y)|n dV (x) dV (y).

233



The inner integral on the right hand side is majorized by
∫

Ωc

|∇v(x)|n dV (x) � 1
(1 − 2a)n

∫

Ωc

|∇u(x)|n dV (x)

for each y in Uc. Hence
∫

Ω
|∇ω|n dV (x) � 1

(1 − 2a)n
∫

Ωc

|∇u|n dV (x)

and

C[Ω, E0, E1] �
1

(1− 2a)n
∫

Ωc

|∇u|n dV (x).

Letting a → 0 we have

(9) C[Ω, E0, E1] �
∫

Ω
|∇u|n dV (x).

Because the infimum on the right hand side of (7) is over a wider class of functions

than on the left hand side we have the inequality

(10) C[Ω, E0, E1] � inf
u

∫

Ω
|∇u|n dV (x).

By (9) and (10) we have the desired conclusion. �

Theorem 2.1. If Ω is a bounded domain whose boundary consists of a finite
number of C1 hypersurfaces, and if E0 and E1 are disjoint subsets of the boundary

of Ω consisting of a finite number of closed hypersurfaces, then we have

(11) modΩ(Γ) = inf
f

V (Ω, f)
L(Γ, f)n

= C[Ω, E0, E1],

where f is any metric in Ω and Γ is the family of Jordan arcs joining E0 and E1
inside Ω.

�����. It follows by Propositions 2.1, 2.2, 2.3 and 2.4. �

The case n = 2 of the above Theorem enables us to give a short proof of Theo-
rem 1.1. In fact, the proof immediately follows from Theorem 1.3 [6], which gives a

solution of a mixed Dirichlet-Neuman problem.
The proof of Theorem 1.3 in Courant’s book [6] is based on using minimizing

sequences. We believe that we can use minimizing sequences as Gehring in [2] to
show the existence of the extremal admissible function u ∈ E(Ω, E0, E1) such that

C[Ω, E0, E1] =
∫

Ω
|∇u|n dV.
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