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EARTHQUAKES AND THURSTON’S BOUNDARY FOR THE

TEICHMÜLLER SPACE OF THE UNIVERSAL HYPERBOLIC

SOLENOID

DRAGOMIR ŠARIĆ

Abstract. A measured laminations on the universal hyperbolic solenoid S is,
by our definition, a leafwise measured lamination with appropriate continu-
ity for the transverse variations. An earthquakes on the universal hyperbolic
solenoid S is uniquely determined by a measured lamination on S; it is a
leafwise earthquake with the leafwise earthquake measure equal to the leaf-
wise measured lamination. Leafwise earthquakes fit together to produce a new
hyperbolic metric on S which is transversely continuous and we show that
any two hyperbolic metrics on S are connected by an earthquake. We also
establish the space of projective measured lamination PML(S) as a natural
Thurston-type boundary to the Teichmüller space T (S) of the universal hyper-
bolic solenoid S. The (baseleaf preserving) mapping class group MCGBLP (S)
acts continuously on the closure T (S) ∪ PML(S) of T (S). Moreover, the set
of transversely locally constant measured laminations on S is dense in ML(S).

1. Introduction

The universal hyperbolic solenoid S is the inverse limit of the system of all finite
sheeted unbranched pointed covers of a compact surface of genus greater than 1.
Sullivan [23] introduced the solenoid S as the “universal compact surface”, i.e. the
universal object in the category of finite unbranched covers of a compact surface.
It turns out that S has a rich deformation theory, i.e. the Teichmüller space T (S)
is highly non-trivial. In fact, T (S) is a first example of a Teichmüller space which
is separable but not finite dimensional. (Recall that Teichmüller spaces of compact
Riemann surfaces with possibly finitely many points removed are finite-dimensional
complex manifolds, while Teichmüller spaces of geometrically infinite Riemann sur-
faces are non-separable infinite-dimensional complex Banach manifolds.)

Sullivan [23] started the study of the complex structure and the Teichmüller
metric on the Teichmüller space T (S) of the universal hyperbolic solenoid S. The
universal hyperbolic solenoid S has a transverse measure (unlike most of lami-
nations) which is utilized in [22] to continue the investigation of the Teichmüller
metric on T (S). The results in [22] are used in [9] to show that generic points
in T (S) do not have Teichmüller-type Beltrami coefficient representatives which
sharply contrasts the situation for finite surfaces (all points have Teichmüller type
representatives) and for infinite surfaces (a dense, open subset of the Teichmüller
space does). Thus, most points in T (S) are not connected to the basepoint by a
nice Teichmüller geodesic obtained by stretching horizontal and shrinking vertical
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foliation of a holomorphic quadratic differential on S unlike for Riemann surfaces
(see [12] for the statement for infinite surfaces).

By results of Candel [6], a conformal structure on S contains a unique hyper-
bolic metric. This paper starts the investigation of the Teichmüller space T (S) of
the solenoid S using hyperbolic structures on S. (An approach to studying the
decorated Teichmüller space of the related punctured solenoid via hyperbolic struc-
tures is made in [17], [5]. This approach is specific to the punctured solenoid while
the results in the paper hold for both the universal hyperbolic solenoid and the
punctured solenoid.)

Our first result concerns the notion of an earthquake between two hyperbolic
solenoids. An earthquake on a hyperbolic surface is a piecewise isometric bijective
(not necessarily continuous) map from the hyperbolic surface to another hyperbolic
surface. The support of an earthquake is a geodesic lamination (called the earth-
quake fault [24]) along which the quaking (i.e. the discontinuity) appears. The
restriction to each stratum (i.e. a leaf of the support or a connected component of
the complement of the support) of an earthquake is an isometry, and each stratum
is moved to the left when viewed from any other stratum. Given an earthquake on a
hyperbolic surface, there exists a unique transverse measure (called an earthquake
measure) to its support [24] which determines the earthquake. (An earthquake
measure is identified with a positive Radon measure, called a measured lamination,
on the space of geodesics of a surface whose support is the support geodesic lamina-
tion and the measure of a bunch of geodesics in the support is given by the measure
of an arc which intersects them and which does not intersect other geodesics in the
support.) The main result concerning the earthquakes on hyperbolic surfaces is
that any two hyperbolic metrics are connected by an earthquake [24].

We introduce a proper notion of an earthquake measure on the universal hyper-
bolic solenoid S. An earthquake measure on S is an assignment of an earthquake
measure on each leaf (isometric to a hyperbolic plane) of S such that the mea-
sures vary continuously for the transverse variations in an appropriate topology
(see Definition 4.2 for more details). The support of leafwise earthquake measures
are leafwise geodesic laminations which do not vary continuously for the transverse
variations (see Example 4.3). However, the continuity of measures (in the appro-
priate Fréchet topology) guarantees that leafwise earthquakes on S piece together
a new hyperbolic structure on S which is continuous for the transverse variations.
Therefore, earthquake measures on S produce an earthquake of S. We establish
the transitivity statement for earthquakes on hyperbolic structures of the universal
hyperbolic solenoid S analogous to the case of hyperbolic surfaces.

Theorem 5.1. A measured lamination µ on a solenoid X with an arbitrary hy-
perbolic metric gives an earthquake map Eµ of X into another solenoid Y with
a hyperbolic metric such that there exists a (differentiable) quasiconformal map
f : X → Y whose extension to the boundary of leaves coincides with the extension
of Eµ. Any two points in the Teichmüller space T (S) of the universal hyperbolic
solenoid S are connected by a unique earthquake along a measured lamination.

To prove Theorem 5.1, we showed that if two quasisymmetric maps of the unit
circle S1 are close then their corresponding earthquake measures are close (in the
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Fréchet topology). The opposite is false by an easy example. Therefore, the earth-
quake map from the space of bounded measured laminations in the unit disk onto
the Teichmüller space is bijective but not a homeomorphism for the Fréchet topol-
ogy on measured lamination. In the case of compact surfaces, the earthquake map
is a homeomorphism (see [11]) when measured lamination are equipped with weak*
topology (which is equivalent to the Fréchet topology for compact surfaces). We
establish similar result for the solenoid S.

Corollary 5.2. The earthquake map which assigns to each bounded measured lam-
ination on the universal hyperbolic solenoid S the corresponding marked hyperbolic
solenoid is a homeomorphism between the space ML(S) of bounded measured lam-
inations and the Teichmüller space T (S).

Thurston [25],[10] introduced a natural boundary to the Teichmüller space of
a compact surface by “adding at infinity” the space of projective measured lami-
nations. The mapping class group acts continuously on the closure and there is a
classification of its elements according to their action on the boundary. Bonahon [1]
gave an alternative description of the Thurston’s boundary to the Teichmüller space
of a compact surface using the Liouville map which embeds the Teichmüller space
into the space of measures on the space of geodesics of the surface. The boundary
points at infinity are asymptotic rays to the image of the Teichmüller space. We
used (see [21]) the idea of the Liouville embedding to give a Thurston-type boundary
to the Teichmüller space of any (possibly geometrically infinite) Riemann surface.
We extend this result to the Teichmüller space T (S) of the universal hyperbolic
solenoid S.

Biswas, Nag and Mitra [4] introduced the direct limit of projective measured
laminations on the compact surfaces as boundary at infinity of the direct limit of
Teichmüller spaces of compact surfaces covering a fixed compact surface of genus
at least two. Since T (S) contains as a dense subset the above direct limit of Te-
ichmüller spaces of compact surfaces, they remarked that the Thurston’s boundary
for T (S) should be a completion of the union of the projective measured lami-
nations on all compact surfaces. We give a proper analytical description of the
Thurston’s boundary answering their question about the completion. The main
point is to properly define the continuity for the transverse variations of various
spaces of measures and distributions on the space G(S) of geodesics on the univer-
sal hyperbolic solenoid S. We establish this goal using the Fréchet topology on the
(“enveloping”) space of Hölder distributions H(S) (see Section 6).

Theorem 6.2. The Liouville map LS : T (S) → H(S) is a homeomorphisms onto
its image. The set of asymptotic rays to LS(T (S)) is homeomorphic to the space of
projective measured laminations on S. The baseleaf preserving mapping class group
MCGBLP (S) acts continuously on the closure T (S)∪PML(S) of the Teichmüller
space T (S) of the universal hyperbolic solenoid S.

A lift of a measured lamination on a compact surface of genus at least two to
the universal hyperbolic solenoid S is a measured lamination on S. Such measured
lamination is locally constant for the transverse variations and is called a trans-
versely locally constant (TLC) measured lamination. We showed that an arbitrary
measured lamination on S is the limit in the Fréchet topology of the TLC measured
laminations.
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Theorem 6.3. The subset of all measured lamination on the universal hyperbolic
solenoid S which are locally transversely constant is dense in the space of all mea-
sured laminations ML(S) on S for the Fréchet topology.

In Section 7, we introduce the space of compactly supported measured lamination
PML0(Sp) on the punctured solenoid Sp and extend the transitivity of earthquakes
and Thurston’s boundary for the punctured solenoid by replacing ML(S) with
ML0(Sp).

2. Preliminaries

We recall several definitions: the universal hyperbolic solenoid, earthquakes of
the unit disk, the Fréchet topology on the measures on the space of geodesics of
the unit disk.

2.1. The universal hyperbolic solenoid. Let (S, x) be a fixed compact surface of
genus at least two with the basepoint x ∈ S. Consider all finite sheeted unbranched
covers (Si, xi) by compact surfaces with basepoints such that the covering maps
πi : Si → S satisfy πi(xi) = x. There is a natural partial ordering ≤ on the set
of all such coverings. Namely, (Si, xi) ≤ (Sj , xj) if there exists a finite sheeted
unbranched covering map πj,i : Sj → Si, πj,i(xj) = xi, such that πi ◦πj,i = πj . The
set of all coverings is inverse directed, i.e. given two coverings of S there exists a
third covering of S which is larger than the two (see [23], [16], [13], [22]). Sullivan
[23] introduced the universal hyperbolic solenoid S as follows.

Definition 2.1. The universal hyperbolic solenoid S is the inverse limit (for the
above partial ordering) of the directed system of all finite sheeted unbranched covers
of a fixed compact surface of genus at least two.

The inverse limit S is independent of the base surface (i.e. two inverse limits
with two base surfaces of genus at least two are homeomorphic). Thus it is called
the universal hyperbolic solenoid S.

We give an equivalent definition of the universal hyperbolic solenoid S [16]. Let
G be a Fuchsian group uniformizing S, i.e. S is homeomorphic to D/G, where D is
the unit disk. Let Gn be the intersection of all subgroups of G with index at most
n. Then Gn is of finite index in G. We define profinite metric on G (see [16]) by

dist(A, B) = e−n,

for A, B ∈ G, where AB−1 ∈ Gn and AB−1 /∈ Gn+1. The completion of G in the

profinite metric dist is called the profinite group completion Ĝ. The completion
Ĝ is a compact, topological group homeomorphic to Cantor set. The group G is a
dense subgroup of Ĝ. We define an action of G on the product D × Ĝ by

A(z, t) := (A(z), tA−1),

where z ∈ D and t ∈ Ĝ, the action of A on D is just a Möbius map and A acts on

Ĝ because G lies inside Ĝ. The universal hyperbolic solenoid S is homeomorphic
to the quotient (D × Ĝ)/G (see [16]). From this description of S, it is easy to see
that S is a compact space which is locally homeomorphic to a 2-disk times Cantor
set. Moreover, S fibers over D/G with fibers Cantor sets isomorphic to Ĝ, and the
restriction of the fiber map to each leaf is the universal covering of S ≡ D/G. The
same is true for any finite cover of S [15] by replacing G with the covering group.
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Each (D×{t})/G ⊂ S, for t ∈ Ĝ, is a path component, called a leaf of S. Each leaf
is homeomorphic to the unit disk and it is dense in S. Thus, each leaf is simply
connected but the restriction of the topology on S to a leaf is not the standard
topology on the unit disk. We define the universal cover of S by “straightening”
the topology on leaves.

Definition 2.2. The universal cover for the universal hyperbolic solenoid S is given
by

π : D × Ĝ → (D × Ĝ)/G,

where π is the quotient map for the action of G.

A complex structure on the universal hyperbolic solenoid S is a collection of
local charts such that the transition maps are holomorphic in the disk direction
and they vary continuously (for topology of uniform convergence) in the transverse
(Cantor) direction of the local charts [23]. Complex structures on S are in one
to one correspondence with conformal structures (which are continuous for the
variations in the transverse direction) on S by the continuous dependence on the
parameters of the solution of Beltrami equation. Any conformal structure on S
contains a unique hyperbolic metric which is continuous for the variations in the
transverse direction (see [6]). A hyperbolic metric (or a complex structure) on S
which is transversely locally constant for some choice of charts on S is called a TLC
hyperbolic metric (or a TLC complex structure) on S [23]. Any TLC hyperbolic
metric (or complex structure) on S is obtained by lifting a hyperbolic metric (or
a complex structure) from a finite cover of S to S [14]. Note that by identifying

S with (D × Ĝ)/G we fix a TLC complex structure on S coming from Riemann
surface D/G. A (differentiable) quasiconformal map f : S → X from the fixed TLC
complex solenoid S to an arbitrary complex solenoid X is a homeomorphism which
is C∞-differentiable in the disk direction in local charts and varies continuously in
the transverse direction for C∞-topology on C∞-maps [23], [22]. We note that the
use of differentiable quasiconformal maps as opposed to only quasiconformal maps
is necessary in order for compositions of quasiconformal maps to be continuous in
the transverse direction. We define the Teichmüller space T (S) of the universal
hyperbolic solenoid S.

Definition 2.3. The Teichmüller space T (S) of the universal hyperbolic solenoid
S consists of all quasiconformal maps f : S → X up to an equivalence. Two
quasiconformal maps f : S → X and g : S → X1 are equivalent if there exists a
conformal map c : X → X1 such that g−1 ◦ c ◦ f : S → S is homotopic to the
identity. The equivalence class of the identity id : S → S is called the basepoint of
T (S).

2.2. Earthquakes in the unit disk. We define earthquakes of the unit disk D

and recall their main properties. A geodesic lamination in the unit disk D is a
closed subset of D which is foliated by geodesics for the hyperbolic metric on D,
or equivalently, it is a closed subset of the space G(D) of geodesics in D such that
no two geodesics in the subset intersect in D. Some familiar examples of geodesic
laminations in D are: a set of finitely many non-intersecting geodesics in D; a
countable, discrete set of non-intersecting geodesics; a foliation of D by geodesics.
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Definition 2.4. An earthquake measure on the unit disk is a positive Radon mea-
sure on the space of geodesic G(D) of the unit disk D whose support is a geodesic
lamination.

Note that G(D) is homeomorphic to (S1 ×S1− diag)/Z2 by mapping a geodesic
in D to the unordered pair of its ideal endpoints in S1. Thurston [24] introduced
earthquakes as follows.

Definition 2.5. An earthquake E : D → D of the unit disk D is a bijective map
which maps a fixed geodesic lamination λ (called the support of E) in D onto
another geodesic lamination λ′. A geodesic from λ or a connected component of
D−λ is called a stratum of E. The restriction of the earthquake E to each stratum
is a hyperbolic isometry with the additional property that for any two strata A, B
of E, the comparison isometry

E|B ◦ (E|A)−1

is a hyperbolic translation whose axis separates A from B, and which translates B
to the left as seen from A.

Each earthquake E : D → D continuously extends to a homeomorphism of
∂D ≡ S1, which we denote by E|S1 : S1 → S1 [24]. An important theorem due to
Thurston is that each orientation preserving homeomorphism of S1 is obtained as
the extension to S1 of an earthquake [24]. Given an earthquake E of D, there exists
a unique corresponding earthquake measure µ on G(D) supported on λ determined
by the following condition. Consider a subset of λ consisting of geodesics which
intersect a closed arc I. Choose finitely many strata of E intersecting I. The µ
measure of the subset is approximated by the sum of translation lengths between
comparison isometries of adjacent strata (of the above chosen finitely many strata
of E intersecting the arc I) when the distance between adjacent strata goes to
zero [24]. An alternative description is to consider the measure µ to be a family of
measures on arcs I in D which are invariant under homotopies of arcs preserving the
leaves of λ. If an earthquake measure µ corresponds to an earthquake as above, we
denote the corresponding earthquake by Eµ. Two homeomorphisms have the same
corresponding earthquake measures if and only if they differ by a post-composition
with a hyperbolic isometry of D [24].

We say that an earthquake measure µ is bounded if the norm ‖µ‖ satisfies

‖µ‖ := sup
I

µ(I) < ∞,

where the supremum is over all geodesic arcs in D of length 1. If µ is a bounded
earthquake measure, then there exists earthquake Eµ corresponding to µ. A home-
omorphism h : S1 → S1 is quasisymmetric if and only if the corresponding earth-
quake measure µ is bounded, where Eµ|S1 = h [18], [19].

2.3. The Fréchet topology. We recall the definition of the Fréchet topology on
the space of Hölder distributions H(D) of the unit disk D from [20]. The space
of bounded positive measures on G(D), and, in particular, the space of bounded
earthquake measures on G(D) are subsets of H(D).
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The Liouvile measure L on G(D) is given by

L(K) :=

∫∫

K

dαdβ

|eiα − eiβ |2
,

where eiα, eiβ ∈ S1. A box of geodesics Q is the set of all geodesics in (a, b)×(c, d) ⊂
S1×S1−diag, where a, b, c, d ∈ S1 are different points given in the counter-clockwise
order on S1. Then

L(Q) = log
∣

∣

∣

(a − c)(b − d)

(a − d)(b − c)

∣

∣

∣
,

and this formula can be used as an alternative definition of Liouville measure.

We fix 0 < ν ≤ 1. The space of ν-test functions test(ν) consists of all ν-Hölder
continuous functions (ϕ, Q), ϕ : G(D) → R, whose support is in a box of geodesics
Q with L(Q) = log 2 such that ‖ϕ◦ΘQ‖ν ≤ 1, where ΘQ : (−1,−i)×(1, i) 7→ Q is a

hyperbolic isometry and ‖ϕ‖ν := max{supG(D) |ϕ|, sup(x,y) 6=(x1,y1)
|ϕ(x,y)−ϕ(x1,y1)|
d((x,y),(x1,y1))ν },

with d being the angle metric on S1 × S1 (see [20],[21]).

The space of Hölder distribution H(D) (see [21]) of the unit diks D consists of
all linear functionals Ψ on the space of Hölder continuous functions ϕ : G(D) → R

with compact support such that

‖Ψ‖ν := sup
ϕ∈test(ν)

|Ψ(ϕ)| < ∞

for all 0 < ν ≤ 1. The Fréchet topology on H(D) is defined using the family of
ν-norms above. The topological vector space H(D) is metrizable and one metric
which gives the Fréchet topology is

dist(Ψ, Ψ1) :=
∞
∑

n=1

1

n2
‖Ψ − Ψ1‖1/n.

3. The convergence of measures in the unit disk

Denote by Gz , for z ∈ D, the set of geodesics in D which contain z. If z, w ∈ D

then denote by [z, w] the geodesic arc in D between z and w. If K is a subset of
D, denote by GK the set of geodesics of D which intersect K.

We showed in [19] that a sequence of homeomorphisms of S1 pointwise converges
to a homeomorphism of S1 if and only if the sequence of earthquake measures,
corresponding to the sequence of homeomorphisms, converges to the earthquake
measure of the limit. More precisely,

Proposition 3.1. [19] Let µ, µi be uniformly bounded earthquake measures on D,
i.e. ‖µ‖, ‖µi‖ ≤ M < ∞. Then µi → µ in the weak* topology as i → ∞ if
and only if there exist normalizations of earthquake maps Eµi

|S1 , Eµ|S1 such that
Eµi

|S1(x) → Eµ|S1(x) for each x ∈ S1, as i → ∞. (Note that Eµi
|S1 , Eµ|S1 are

well-defined up to the post-compositions by isometries and different normalizations
correspond to different choices of isometries.)

We consider a sequence of quasisymmetric maps converging to a quasisymmetric
map in the quasisymmetric topology and show that the corresponding sequence of
earthquake measures converges in the Fréchet topology.
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Proposition 3.2. Let hn = Eµn
|S1 and h = Eµ|S1 be quasisymmetric maps such

that hn → h as n → ∞, in the quasisymmetric topology. Then ‖µn − µ‖ν → 0 as
n → ∞, for each 0 < ν ≤ 1.

Proof. Assume on the contrary that ‖µn − µ‖ν ≥ m > 0, for a fixed 0 < ν ≤
1. Thus, there exists (ϕn, Qn) ∈ test(ν) such that |µn(ϕn) − µ(ϕ)| ≥ m > 0,
where L(Qn) = log 2. Without loss of generality, we assume that hn, h fix 1, i,−1.
Let Q′

n := hn(Qn) and Q′′
n := h(Qn). There exist unique hyperbolic isometries

An, A′
n, A′′

n of the unit disk D such that An : Qn 7→ (1, i) × (−1,−i), A′
n : Q′

n 7→
(1, i) × (−1, q′n) and A′′

n : Q′′
n 7→ (1, i) × (−1, q′′n), for unique q′n, q′′n ∈ S1.

Define h̄n := A′
n ◦hn ◦A−1

n and f̄n := A′′
n ◦h◦A−1

n . Note that h̄n : 1, i,−1,−i 7→
1, i,−1, q′n and f̄n : 1, i,−1,−i 7→ 1, i,−1, q′′n. The normalization of h̄n and f̄n

implies that h̄n → h̄ and f̄n → f̄ pointwise on S1, where h̄, f̄ are quasisymmetric
maps as well. (This convergence is a consequence of pointwise convergence of a

family of K-quasiconformal maps normalized to fix three points in Ĉ. Note that
we can choose quasiconformal extensions of h̄n, f̄n to have the same quasiconformal
constant by using barycentric extension [7] in the interior and the exterior of the
unit circle S1.)

Consequently, h̄n ◦ f̄−1
n → h̄ ◦ f̄−1 pointwise, as n → ∞. Let Q be an arbitrary

box with L(Q) = log 2. Then |L(A′
n ◦hn ◦h−1 ◦ (A′′

n)−1(Q))−L(Q)| → 0 as n → ∞
because hn → h in the quasisymmetric topology and by the invariance of Liouville
measure under hyperbolic isometries. Thus h̄◦ f̄−1 preserves Liouville measure and
fixes 1, i,−1. Therefore h̄ = f̄ .

Let µ′
n := A∗

n(µn) and let σn := A∗
n(µ). Then there exists a sequence (ϕ′

n, (1, i)×
(−1,−i)) ∈ test(ν) such that

(1) |µ′
n(ϕ′

n) − σ′
n(ϕ′

n)| ≥ m > 0.

Since µ′
n is the push forward by a hyperbolic isometry of µn then ‖µ′

n‖ = ‖µn‖.
Moreover, since µn are earthquake measures for hn and hn converges in the qua-
sisymmetric topology, it follows that µn are uniformly bounded measures (and the
same holds for µ′

n). The sequence σn is also uniformly bounded because it is the
push forward of a single measure by hyperbolic isometries. Both sequences µ′

n and
σn converge to bounded earthquake measures µ′ and σ such that h̄ = Eµ′ |S1 and
f̄ = Eσ|S1 by Proposition 3.1. By (1), we conclude that µ′ 6= σ. (To see that
µ′ 6= σ, note that the weak* convergence on a fixed box (1, i) × (−1,−i) is equiva-
lent to the uniform convergence with respect to all (ϕ, (1, i) × (−1,−i)) ∈ test(ν).
See [20] for details.) But this is a contradiction with h̄ = f̄ by the uniqueness of
earthquake measures [24]. ✷

We remark that the converse of Proposition 3.2 is not true. This is easily seen by
an example. Take a fixed geodesic with a positive weight as one lamination. Take
a convergent sequence in Fréchet topology to consists of geodesics sharing exactly
one endpoint with the above geodesic and take the same positive weight. It is
obvious that the extension of the earthquakes to S1 corresponding to the sequence
does not converge to the extension of the earthquake to S1 corresponding to the
limit in the quasisymmetric topology. Note that they do converge pointwise. This
is in contrast with the statement in Proposition 3.1 which gives the equivalence.
However, if we restrict ourselves to the earthquakes on compact surfaces then the
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equivalence holds. One of the main results in the next two sections is that the
equivalence holds for the universal hyperbolic solenoid as well.

4. Measured laminations on the universal hyperbolic solenoid

Recall that a leaf of the universal hyperbolic solenoid S intersects any local chart
countably many times. Each intersection is a 2-disk, which is called a local leaf.
Given two local leaves of two global leaves, there exists an identification isometry
of the global leaves given as follows. Since the hyperbolic metric in the local charts
is continuous for the trivial (vertical) identification, we can choose two points sit-
ting one above the other and two unit tangent vectors based at the points whose
directions get vertically identified. (The two vectors are not necessarily vertically
identified because the hyperbolic metrics are not constant in the transverse direc-
tion.) The isometric identification is uniquely determined by requiring to map one
point onto the other other such that the unit vector is mapped onto the unit vec-
tor. The identification depends on the chart and the choice of two points while the
choice of tangent vectors does not affect it.

Fix one local leaf l and consider a sequence of local leaves ln approaching l.
Suppose we choose two different isometric identifications fn : l̃ → l̃n and gn : l̃ → l̃n
of the global leaves l̃, l̃n containing local leaves l, ln (the identifications differ by the

choice of points in the local leaves). Then g−1
n ◦fn is an isometry of l̃ which converges

to the identity as n → ∞ because of the continuity in the transverse direction of the
hyperbolic metrics. This implies that any two identifications of two global leaves
differ by an isometry which is close to the identity when corresponding local leaves
are close. Therefore, it makes sense to compare objects (preserved by isometries)
on two nearby leaves as well as maps from leaves.

Definition 4.1. A (transversely continuous) geodesic lamination on the universal
hyperbolic solenoid S is an assignment of a geodesic lamination to each leaf which
is continuous (for Hausdorff distance between closed subset of G(D) defined using
the angle metric d on S1 × S1) with respect to the transverse variations given by
each local chart as above.

Namely, for any local chart, we consider the isometric identifications as above.
The geodesic laminations on global leaves can are mapped to the unit disk D by
the identifications. Thus we obtain a map from the local transverse set (obtained
by considering each local leaf in the chart as a point) to the space of geodesic
laminations on the unit disk D. We require that this map is continuous for the
Hausdorff topology on the space of geodesic laminations.

This definition certainly seems in the spirit of transverse continuity of the hy-
perbolic metrics on S. However, we introduce below measured laminations on S
in terms of the continuity of measures. It turns out that the support of measured
laminations on S are not geodesic laminations as above, even though the restriction
to each leaf is a geodesic lamination.

Definition 4.2. A (transversely continuous) measured lamination µ on S is an
assignment of a bounded measured lamination to each leaf of S such that it is
continuous for the transverse variations with respect to Fréchet topology on the
space of measured laminations on the unit disk.
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Given a local chart D × T , where D is a 2-disk and T a transverse Cantor
set, the measured lamination µ on S gives a map µ : T → MLbdd(D) using the
identifications of leaves induced by the local chart. In the above definition, we
require that ‖µ(t) − µ(t′)‖ν → 0 as t′ → t for each t ∈ T and for each 0 < ν ≤ 1.

The definition of measured laminations on S does not specify the support. To
give an example of a measured lamination on S, fix a measured lamination σ on a
compact surface S of genus at least two. Since each leaf of S is a universal cover of
the compact surface S, we can lift σ to a measured lamination σ̃ on each leaf of S.
The lifts σ̃ are locally constant for the transverse variations in the local charts of a
TLC hyperbolic metric coming from the hyperbolic metric on S. Thus σ̃ defines a
geodesic lamination on S.

As we mentioned above, there are measured laminations on S whose supports
are not a geodesic laminations on S. We give an example of a such measured
lamination.

Example 4.3. We identify S with (D×Ĝ)/G, for a Fuchsian group G uniformizing
a compact hyperbolic surface S = D/G. We define a measured lamination µ̃ on

D× Ĝ which is invariant under G. Let Gi be a decreasing sequence of finite index
normal subgroups of G = G1 such that ∩∞

i=1Gi = {id}. We fix two simple closed
curves γ1, γ2 in S which intersect in one point and we fix two lifts γ̃1, γ̃2 of γ1, γ2 in
the universal cover D such that |γ̃1∩γ̃2| = 1. Denote by C1, C2 primitive hyperbolic
translations in G whose axes are γ̃1, γ̃2 respectively. Let Cri

1 and Cti

2 be primitive

elements in Gi. We further require that the group G̃i+1 generated by Cri

1 , Cti

2 and
Gi+1 is of index at least 3 in Gi.

Consider the cosets ai
0G̃i+1, a

i
1G̃i+1, . . . , a

i
ki

G̃i+1, ai
0 = id, of G̃i+1 in G. Since

[Gi : G̃i+1] ≥ 3, there are at least two cosets different from G̃i+1 which lie in Gi.

Denote them by ai
1G̃i+1, a

i
2G̃i+1 ⊂ Gi. Then (ai

1Gi+1) · (ai
2Gi+1)−1 are not of the

form Ck
j Gi+1, for j = 1 or j = 2 and for some k ∈ Z. To see this, first note that if

ai
1(ai

2)−1 is a power of C1 or C2 then it has to be a power of primitive elements Cri

1

or Cti

2 in Gi. (Otherwise (ai
1Gi+1)·(ai

2Gi+1)−1 /∈ Gi/Gi+1 which is a contradiction.)

On the other hand, by our choice of G̃i+1 and cosets ai
1G̃i+1, a

i
2G̃i+1 we get that

ai
1(ai

2)−1 is not a power of primitive elements Cri

1 or Cti

2 .

Let δγ̃i,t denotes a unit mass measure on the space of geodesics of D×Ĝ supported

on the geodesic (γ̃i, t) ⊂ D × {t}, for t ∈ Ĝ. We define

µ̃′ :=
∑

i

(

∑

t∈ai

1
Ĝi+1

miδγ̃1,t +
∑

t∈ai

2
Ĝi+1

miδγ̃2,t

)

where mi > 0, mi → 0 as i → ∞ and Ĝi+1 < Ĝ is the profinite completion of Gi+1.
The measured lamination µ̃′ is varying continuously in the transverse direction for
the Fréchet topology on measured laminations of the unit disk. The continuity is

immediate at any t ∈ Ĝ because µ̃′ is locally constant.

We define

µ̃ :=
∑

A∈G

A∗(µ̃′).
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Then µ̃ is invariant under the action of G. We first show that the support of µ̃ on
each leaf D×{t}, t ∈ Ĝ, is a geodesic lamination. Let ω be a fundamental polygon

for the action of G in D. Then ω × Ĝ is a fundamental set for the action of G
on D × Ĝ. It is enough to show that the support of µ̃ has no self-intersections on
ω × Ĝ. Note that the support of µ̃′ has no self-intersections because the cosets of
Ĝ which contain copies of γ̃1 and γ̃2 in the support are chosen to be disjoint. The
only possibility for the support of µ̃ to have a self-intersection is if a coset ai

1Ĝi+1

is mapped onto the coset ai
2Ĝi+1 by Ck

1 for some k ∈ Z, and similar for C2. This
is impossible by our choice of cosets.

We claim that µ̃ is continuous for the transverse variations in the Fréchet topol-
ogy on the space of measured laminations of the unit disk D. We first can assume
that different lifts of γj , j = 1, 2, in D do not belong to a single box of geodesics Q
with L(Q) = log 2 by appropriately choosing the group G. If we show continuity in
this case, the result follows because the convergence of measured laminations in the
Fréchet topology is independent of the hyperbolic metric. We already concluded
that µ̃′ is continuous for the transverse variations. By taking the push-forward of
µ̃′ by G, we add some extra support of µ̃ intersecting fundamental set ω × Ĝ. The
extra support is obtained by adding (γ̃1, t) for t ∈ Ck

1 ai
1Ĝi+1, k ∈ Z and i = 1, 2, . . .,

and by adding (γ̃2, t) for t ∈ Ck
2 ai

2Ĝi+1, k ∈ Z and i = 1, 2, . . .. It is obvious that

the restriction of µ̃ to the part which intersects ω × Ĝ is continuous for the trans-
verse variations at any t ∈ Ĝ−{id}, similar to µ̃′. The continuity at t = id follows
because mi → 0. Our assumption that the orbit of γ̃i does not contain two geodesic
which lie in a box Q with L(Q) = log 2 implies the continuity of µ̃.

The measured lamination µ̃ on D×Ĝ descends to a measured lamination µ on the
universal hyperbolic solenoid S. The continuity of µ for the transverse variations
follows by the continuity of µ̃. It is clear that the support of µ is not a geodesic
lamination on S as in Definition 4.1 because it is not a closed set. Moreover, the
closure in S of the support of µ is not a geodesic lamination because on the baseleaf
it consists of the full preimage of the two intersecting geodesics γ1 and γ2 on the
closed surface S. ✷

5. Earthquake theorem

We show that any two points in the Teichmüller space T (S) of the universal
hyperbolic solenoid S are connected by an earthquake. We first need to recall
certain facts from [21] about arbitrary points in T (S).

A TLC solenoid S is homeomorphic to (D × Ĝ)/G, where D is the unit disk.

The space D× Ĝ is considered as a universal cover of S. Denote by π : D× Ĝ → S
the covering map. The action of G is given by

A(z, t) := (A(z), tA−1),

where A can be considered as an element of Ĝ.

A point in T (S) is given by a (differentiable) quasiconformal map f : S → X ,
where X is the universal hyperbolic solenoid with an arbitrary hyperbolic metric
(not necessarily TLC). We introduced (see [21]) the universal (hyperbolic) cover
to X and the covering group as follows. The action by G does not introduce

identifications to the set {0} × Ĝ, 0 ∈ D. Consider a local chart D × T for X
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which contains f(π({0} × Ĝ)) as a vertical set, where T ≡ Ĝ and D is a 2-disk

with center at 0. To fix the notation, we assume that f(π({0} × Ĝ)) corresponds
to {0} × T ⊂ D × T in the local chart. We fix unit tangent vectors at the points

f(π({0} × Ĝ)) corresponding under the chart map to the unit tangent vectors at
the points {0} × T along the positive axis in the chart D × T .

The universal cover for X is, by the definition, D × T and the covering map
πX : D × T → X is given by isometrically mapping each D × {t} onto the leaf
containing f(π(0, t)) such that the origins are mapped onto the origins and the
unit tangent vectors along positive axes are mapped onto the unit tangent vectors
along the positive axes when considered in the chart D × T . The map f : S → X
lifts to a quasiconformal map

f̃ : D × Ĝ → D× T

of the universal covers.

The action of G is conjugated by f̃ to an action of a group GX on D × T . An
element A of G acts on D× Ĝ by A(z, t) = (A(z), tA−1), namely it acts on the unit
disk component by hyperbolic isometry and it shifts the leaf D× {t} onto the leaf
D× {tA−1}. In particular, the action on the disk coordinate is independent of the
leaf (the second coordinate). We define a covering transformation Af for X by the
formula

(Af ◦ f̃)(z, t) = (f̃ ◦ A)(z, t).

An equivalent definition for Af is

Af (z, t) := (πX)−1(πX(z, t), tA−1),

where πX(z, t) ∈ S and πX(·, tA−1) stands for the inverse of the covering map
restricted to D × {tA−1}. (Recall that the covering map when restricted to each
leaf is an isometry for the hyperbolic metric on leaves.) Thus Af is an isometry
on each leaf of D × T , but it varies with leaves. The group of covering maps for
the hyperbolic solenoid X is denoted by GX := f̃Gf̃−1. (If all Af in a finite
index subgroup of GX are constant in the transverse direction then X has a TLC
hyperbolic metric.)

We show that earthquakes are transitive in T (S).

Theorem 5.1. A measured lamination µ on a solenoid X with an arbitrary hyper-
bolic metric gives an (leafwise) earthquake map Eµ of X into another solenoid Y
with hyperbolic metric such that there exists a (differentiable) quasiconformal map
f : X → Y whose extension to the boundary of leaves coincides with the extension
of Eµ. Any two points in the Teichmüller space T (S) of the universal hyperbolic
solenoid S are connected by a unique earthquake along a measured lamination on
S.

Proof. We first show that an earthquake map along a measured lamination µ on
the hyperbolic solenoid X gives another hyperbolic solenoid Y . We recall that µ
is an assignment of bounded measured laminations to the leaves of X such that it
varies continuously for the transverse variations.

Let f : S → X be a differentiable quasiconformal map, where S = (D × Ĝ)/G.
Recall the universal cover πX : D × T → X and lift µ to a measured lamination
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µ̃ which varies continuously for the transverse variations. In other words, µ̃ :
T → MLbdd(D) is continuous for the Fréchet topology on the space MLbdd(D) of
bounded measured laminations of D and it satisfies the invariance under the action
of Gf , i.e.

(Af (t))∗(µ̃(t)) = µ̃(tA−1)

for all Af ∈ Gf , where Af (t) is the hyperbolic isometry of D obtained by restricting
Af to a map from D × {t} onto D × {tA−1}.

We consider a family of earthquakes Eµ̃(t) : D → D, for t ∈ T , and we normalize

them to fix 1, i and −1 on the unit circle S1 = ∂D. We first show that they
induce a family of quasisymmetric maps of S1 × T ≡ ∂(D) × T onto itself which
conjugate Gf onto another group of leafwise isometries. Let ht := Eµ̃(t)|S1 , where
ht : 1, i,−1 7→ 1, i,−1. By the above invariance of µ̃ under the action of Af and by
the fact that an earthquake is determined, up to post-composition with a hyperbolic
isometry, by its measure [24], we get

htA−1 ◦ Af (t) = A∗(t) ◦ ht,

where A∗(t) is a hyperbolic isometry between D× {t} and D× {tA−1} defined by
the equation. To each Af ∈ Gf we assign such A∗ which is a hyperbolic isometry
between leaves. The maps A∗, for all Af ∈ Gf , form a group G∗ isomorphic to Gf

under the conjugation by h.

We claim that A∗(t) is continuous in t for the standard topology on the space
of hyperbolic isometries of D. To see this, it is enough to show that the images of
three fixed point on S1 vary continuously in t. By the above equation, we get

A∗(t) = htA−1 ◦ Af (t) ◦ h−1
t .

Since µ̃(t) varies continuously in t and since ht, htA−1 are properly normalized earth-
quakes, we conclude that ht, htA−1 are continuous in t for the topology of pointwise
convergence by [19, Proposition 3.3]. By our assumption, Af (t) is continuous in t.
Thus A∗(t) is continuous in t.

We need to show that the quotient (D×T )/G∗ is quasiconformally equivalent to
X , i.e. there exists a homeomorphism g : X → (D×T )/G∗ which is a differentiable
quasiconformal map on each leaf and which varies continuously in the transverse
direction (in the C∞-topology). Let gt = ex(ht : D → D) be barycentric extension
of ht : S1 → S1 (see [7] for the definition and properties of barycentric extension).
Recall that the family ht, t ∈ T , is continuous in the pointwise convergence topology.
Then the family gt of barycentric extensions is continuous for the C∞-topology of
C∞-maps (over compact subsets of D) by [7].

We claim that ft is also continuous in the parameter t for the quasiconformal
topology. (Note that the fact that the earthquake measures converge in the Fréchet
topology does not imply that the extension of earthquakes to S1 converge in the
quasisymmetric topology by the example in Section 3. At this point we strongly
use compactness of the solenoid X .) Recall that GX has a compact fundamental

set for the action on D×T [22] (given by the image under f̃ of the fundamental set

ω × Ĝ for the action of G on D × Ĝ). Thus the Beltrami coefficients of the family
gt are continuous in t for the supremum norm over the fundamental set of X . By
the invariance of the quasisymmetric family ht and by the conformal naturallity of
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barycentric extension [7], we obtain

gtA−1 ◦ Af (t) = A∗(t) ◦ gt,

for t ∈ T . This invariance under Gf and the continuity of Beltrami coefficients
of gt on the fundamental domain of Gf implies that the Beltrami coefficients of
gt are continuous in t for the essential supremum norm on the unit disk. Thus
we obtained a differentiable quasiconformal homeomorphism g̃ : D × T → D × T ,
g̃(·, t) := gt(·), which conjugates Gf onto G∗. Consequently it projects onto a
quasiconformal homeomorphism g : X → (D × T )/G∗. Thus the earthquake Eµ

defines a new hyperbolic solenoid Y := (D × T )/G∗ which is the image of X . By
its definition, the boundary values of each gt agree with Eµ̃(t)|S1 . This finishes the
proof of the first part of the Theorem.

It remains to show that any two points [f : S → X ], [g : S → Y ] are connected
by an earthquake along a measured lamination on X . In other words, we need to
find a measured lamination µ on X such that Eµ maps X onto Y and that the
extensions of Eµ to the boundaries of leaves are equal to the extensions of g ◦ f−1.

We lift the maps f and g to the maps f̃ : D×T → D×T and g̃ : D×T → D×T of
the universal covers of X and Y . Let ht := g̃ ◦ f̃−1|D×{t}. Note that the family of
quasisymmetric maps ht, t ∈ T , is continuous in t for the quasisymmetric topology.
By Thurston’s earthquake theorem for the unit disk [24], there exists a measured
lamination µ̃(t) such that Eµ̃(t)|S1 = ht. Moreover, µ̃(t) is a bounded earthquake
measure on D. Since ht vary continuously, we get that µ̃(t) vary continuously
in t for the Fréchet topology by Proposition 3.2. The family ht satisfies invariance
properties with respect to GX . Therefore, by the uniqueness of earthquake measures
[24], the family of corresponding earthquake measures µ̃(t) also satisfies invariance
properties. Thus it descend to the desired earthquake measure µ on X . ✷

We recall that Proposition 3.2 states that if quasisymmetric maps are close (in
the quasisymmetric topology) then corresponding earthquake measures are close (in
the Fréchet topology). The converse is false in general. However, we showed above
that the compactness of the universal hyperbolic solenoid S forces the continuity of
quasisymmetric maps on nearby leaves obtained by earthquaking along transversely
continuous measured laminations. The proof extends along the same lines to show
that if two measured laminations on the solenoid S are close in the Fréchet topology
then the extension of earthquake maps to the boundary leaves are close in the
quasisymmetric topology. We obtained

Corollary 5.2. The earthquake map which assigns to each bounded measured lam-
ination on the universal hyperbolic solenoid S the corresponding marked hyperbolic
solenoid is a homeomorphism between the space ML(S) of bounded measured lam-
inations and the Teichmüller space T (S).

6. Thurston’s Boundary for T (S)

We recall the definition of the Liouville map  L : T (D) → H(D) from the uni-
versal Teichmüller space T (D) to the space of Hölder distributions H(D) of the
unit disk D. (Liouville map first appears in [1] in the case of the Teichmüller space
of a compact Riemann surface and it is used in [21] to introduce Thurston-type
boundary to the universal Teichmüller space T (D).)
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The universal Teichmüller space T (D) is the set of all quasisymmetric maps
h : S1 → S1 which fix 1, i,−1. The topology on T (D) is defined by requiring that
two quasisymmetric maps are close if there exist their quasiconformal extensions
to D whose Beltrami coefficients are close in the essential supremum norm on D.

The Liouville map L : T (D) → H(D) is defined by taking the pull-back

L(h) := h∗(L)

of the Liouville measure L by the quasisymmetric maps h ∈ T (D). The Liouville
map L is a homemorphism of T (D) onto its image; the image L(T (D)) ⊂ H(D)
is closed and unbounded (see [21]). An asymptotic ray to L(T (D)) is a path tΨ,
t > 0 and Ψ ∈ H(D), such that there exists a path αt, t > 0, in T (D) with

1

t
αt → Ψ,

as t → ∞. Each positive ray through the origin intersects the image L(T (G))
in at most one point. Therefore, under the projection of the vector space H(D)
to the unit sphere (in H(D), for a fixed ν-norm), the set  L(T (D)) is mapped
homeomorphically and its boundary corresponds to the asymptotic rays. Thus, we
consider asymptotic rays to L(T (D)) as a natural boundary to T (D). In [21], we
characterized the boundary points of the universal Teichmüller space T (D) as all
asymptotic rays along bounded measured laminations. Namely,

Theorem 6.1. [21] The Liouville map L : T (D) → H(D) is a homeomorphism
onto its image and L(T (D)) projects homeomorphically to the unit sphere. The
boundary of T (D) is identified by the above embedding with the space of bounded
projective measured laminations PMLbdd(D). The (quasiconformal) mapping class
group QMCG(D) acts continuously on the closure T (D)∪PMLbdd(D) of the uni-
versal Teichmüller space T (D).

We introduce a Thurston-type boundary to the Teichmüller space T (S) of the

universal hyperbolic solenoid S. The space of geodesics on S = (D × Ĝ)/G is

naturally identified with the G-orbits of points in (S1 × S1 − diag) × Ĝ given by

lifting a single geodesic on a leaf of S to the universal cover D × Ĝ. Since each
leaf of S is isometric to the hyperbolic plane, it supports the Liouville measure
on the space of its geodesics. Thus S has a leafwise Liouville measure which lifts
to a leafwise measure, called the leafwise Liouville measure Lleaf , on the space of

geodesics of the universal cover D × Ĝ.

A (leafwise) Hölder distribution Ψ for the universal hyperbolic solenoid S is a

family of Hölder distributions Ψt ∈ H(D), for t ∈ Ĝ, which are invariant under the
action of G, i.e.

ΨtA−1(ϕ ◦ A−1) = Ψt(ϕ),

where ϕ is a Hölder continuous function with compact support on the space of
geodesics G(D), and which vary continuously in t for the Fréchet topology, i.e.

‖Ψt − Ψt1‖ν → 0,

as t1 → t for each t ∈ Ĝ and for each 0 < ν ≤ 1.
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The ν-norm of a leafwise Hölder distribution Ψ is given by

‖Ψ‖ν := sup
t∈Ĝ,ϕ∈test(ν)

|Ψt(ϕ)|,

for 0 < ν ≤ 1, where test(ν) is the set of ν-test functions on G(D). If ‖Ψ‖ν < ∞
for all 0 < ν ≤ 1 then Ψ is called bounded leafwise Hölder distribution. The space
of all (bounded) leafwise Hölder distributions for the universal hyperbolic solenoid
S is denoted by H(S).

Let [f : S → X ] ∈ T (S) be an arbitrary point and denote by f̃ : D× Ĝ → D×T

the lift of f to the universal cover. Let h : S1 × Ĝ → S1 × T be the leafwise
quasisymmetric extension of f̃ to the boundary of leaves. We define the Liouville
map LS : T (S) → H(S) for the universal hyperbolic solenoid S by

LS([f ]) = h∗(Lleaf ).

(Note that bounded measures on G(D) are in H(D) and that a pull-back by a
quasisymmetric of the Liouville measure is bounded [21]. Thus the image of the
Liouville map is in H(D) and the leafwise statement for the universal hyperbolic
solenoid immediately follows.)

We show that the Liouville map is an embedding and that the natural bound-
ary (i.e. the set of asymptotic rays) is homeomorphic to the space of projective
measured laminations on S.

Theorem 6.2. The Liouville map LS : T (S) → H(S) is a homeomorphisms onto
its image. The set of asymptotic rays to LS(T (S)) is homeomorphic to the space of
projective measured laminations on S. The baseleaf preserving mapping class group
MCGBLP (S) acts continuously on the closure T (S)∪PML(S) of the Teichmüller
space T (S) of the universal hyperbolic solenoid S.

Proof. The Liouville map  LS is assigning to any [f ] ∈ T (S) the pull-backs of the

leafwise Liouville measures on G(D × Ĝ) by the extensions h to S1 × Ĝ of the lift

f̃ : D × Ĝ → D × Ĝ. The continuity of  L : T (D) → H(D) implies that (ht)∗(L) is
continuous in t for the Fréchet topology. Thus  L maps T (S) into H(S). Recall that
T (S) embeds in the universal Teichmüller space T (D) by restricting the map f :
S → X to the baseleaf of S [14]. Denote by Trestr.(D) the image of the embedding.
Also, since the baseleaf is dense in S, the restriction to the beaseleaf of the pull-back
of the leafwise Liouville measure completely determines the measure. Therefore,
the restriction of the Liouville map LS to the baseleaf(≡ D) L : Trestr.(D) → H(D)
completely determines the map. Since  L : T (D) → H(D) is a homeomorphism onto
its image, it follows that L : Trestr.(D) → H(D) is also a homeomorphism onto its
image. Therefore, LS : T (S) → H(S) is a homeomorphisms onto its image.

Let sβ, s > 0, be an asymptotic ray to  L(T (S)) in H(S), i.e. there exists a path

s 7→ αs in  L(T (S)) such that the lifts α̃s, β̃ to the universal cover D × Ĝ satisfy

‖ 1
s α̃s − β̃‖ν → 0 as s → ∞, for all 0 < ν ≤ 1. This implies that ‖α̃s|D×{t} −

β̃|D×{t}‖ν → 0 for all t ∈ Ĝ as s → ∞. By [21], each β̃|D×{t}, t ∈ Ĝ, is a measured
lamination on D × {t}. Therefore, β ∈ H(S) is a leafwise measured lamination,
and since it belongs to H(S), it is continuous for the transverse variations. Thus
β is a measured lamination on S. The earthquake theorem (Theorem 5.1) for the
universal hyperbolic solenoid S shows that an earthquake path Esµ : S → Xs,
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s > 0, is in T (S). Denote by µ̃ the lift of µ to the universal cover D× Ĝ of S. Then
hs := Esµ̃ is a leafwise earthquake map. By [21, Theorem 2], we have

1

s
(hs|D×{t})∗(L) → µ̃|D×{t},

in the ν-norm, 0 < ν ≤ 1, as s → ∞ for each t ∈ Ĝ. Moreover, [21, Lemma 4.4]
shows that the above convergence in the ν-norm, 0 < ν ≤ 1, is uniform independent
of the leaf D× {t}. Thus

(hs)∗(Lleaf ) → µ,

as s → ∞ in the Fréchet topology on H(S). Thus the natural boundary to T (S) (i.e.
the space of asymptotic rays to  L(T (S)) in H(S)) is homeomorphic to the space
PML(S) of projective measured laminations on S. The continuity of the action
of the baseleaf preserving mapping class group on the closure T (S) ∪ PML(S) is
immediate from [21]. ✷

Note that leafwise measured laminations on S are given in terms of continuity
for the transverse variations. We show that each leafwise measured lamination
on S is approximated by transversely locally constant (TLC) measured lamination
(i.e. laminations obtained by lifting laminations on compact surfaces to S) which
is parallel to the statement that each hyperbolic metric on S is approximated by
TLC hyperbolic metrics.

Theorem 6.3. The subset of all measured lamination on the universal hyperbolic
solenoid S which are locally transversely constant (TLC) is dense in the space of
all measured laminations ML(S) on S for the Fréchet topology.

Proof. Recall that Trestr.(D) is obtained by taking the closure of the union of
all quasisymmetric maps which conjugate finite index subgroups of G onto other
Fuchsian groups [14], i.e. the closure of the union ∪[G:K]<∞T̃ (D/K) of the lifts

T̃ (D/K) to T (D) of all Teichmüller spaces T (D/K) of finite degree unbranched
covers D/K of D/G. By the characterization of the image of  L from [1], the image

L(∪[G:K]<∞T̃ (D/K)) of the union consists of all bounded Hölder distributions α
which are positive measures invariant under finite index subgroups of G and which
satisfy e−α([a,b]×[c,d])+e−α([b,c]×[d,a]) = 1 for all a, b, c, d ∈ S1 given in counterclock-
wise order.

Since  L is a homeomorphism onto its image and  L(T (D)) is closed in H(D)
[21], it follows that  L(Trestr.(D)) equals to the closure (in the Fréchet topology) of

 L(∪[G:K]<∞T̃ (D/K)). By [1] or [21], the asymptotic rays to  L(∪[G:K]<∞T̃ (D/K))
are containing all the projective measured laminations which are invariant under all
finite index subgroups K of G. The Liouville map  L composed with the projection
pr : H(S) → Sν to the unit sphere Sν in H(S) (for a fixed ν-norm) is a homeomor-
phism (see [21]). This implies that the points in the closure of pr ◦  L(Trestr.(D))
which are not in pr◦  L(Trestr.(D)) are projectivized asymptotic rays to  L(Trestr.(D).
Any such point in the closure of pr ◦  L(Trestr.(D)) is approximated by projective
measures in pr ◦  L(Trestr.(D)) that are invariant under finite index subgroups of G.
Thus the closure of all invariant (under finite index subgroups of G) projective mea-
sured laminations contains all asymptotic rays to  L(Trestr.). The measured lamina-
tions invariant under finite index subgroups of G lift to locally transversely constant



18 DRAGOMIR ŠARIĆ

measured laminations on S. Thus the limits of locally transversely constant mea-
sured laminations on S give all (transversely continuous) measured laminations on
S. ✷

Remark 6.4. The set of asymptotic rays to  L(Trestr.(D)) in H(D) is equal to
the restriction to the baseleaf of the set of asymptotic rays to  L(T (S)) in H(S).
This is a consequence of the proof of Theorem 6.3, since each asymptotic ray for
 L(Trestr.(D)) is the limit in the Fréchet topology of the asymptotic rays invariant
under finite index subgroups of G.

7. The punctured solenoid

We sketch an extension of our results to the punctured solenoid Sp defined in
[17]. We first recall the definition of Sp.

Let H be the subgroup of PSL2(Z) such that D/H is a once punctured torus.

Denote by Ĥ the profinite completion of H . Then we define (see [17]) the punctured
solenoid by

Sp := (D × Ĥ)/H,

where the action of H is given by A(z, t) := (A(z), tA−1), for A ∈ H .

A leafwise measured lamination on Sp is an assignment of a bounded measured
lamination to each leaf of Sp which varies continuously in the transverse direction.
The support of a leafwise measured lamination on Sp is a leafwise geodesic lam-
ination which is not necessarily continuous for the transverse variations. We say
that the support of a leafwise measured lamination on Sp is compact if, when re-
stricted to each leaf of Sp, the support geodesic lamination is a pre-compact subset
of Sp. The earthquake theorem holds for Sp when we use the space of measured
laminations with compact support ML0(Sp).

If a simple geodesic on a punctured surface enters a definite neighborhood of a
puncture, then it has an endpoint at the puncture. We recall a standard proof of
this fact in the upper half-plane model of the hyperbolic plane. Let A : z 7→ z + 1
be the parabolic element corresponding to the puncture. If a lift of the geodesic
entering a neighborhood of a puncture on the surface is a Euclidean half-circle with
radius greater than 1/2, then the translate of the lift of the geodesic by A intersects
the lift of the geodesic. Thus the geodesic is not simple. Contradiction. Therefore,
there exists a definite neighborhood of a puncture where no simple geodesic enters
unless it ends at the puncture.

Assume that a measured lamination µ on Sp does not have a compact support.
Then there exists a leaf l of Sp such that the restriction µl of µ contains a geodesic
g ∈ l with an endpoint at the puncture. By the continuity for the transverse
variations, the support of µl contains the translates of g in l by parabolic elements
Akn ∈ H , for a fixed k > 0 and for all n ∈ N, where A fixes the endpoint of
g. Then g has to be isolated in l because otherwise the translates under Akn of
the geodesics in the support of µl converging to g would intersect the geodesics
converging to g similar to the punctured surface case. Thus µl would not be a
measured lamination. The remaining possibility is that g is isolated with atomic
measure. Then the translates Akn(g) also have atomic measure approximately equal
to the atomic measure of g for n large and they share the same endpoint. Then the
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measured lamination µ|l is not bounded which is a contradiction with the definition
of a measured lamination on Sp. Therefore, a measured lamination µ on Sp always
has a compact support.

As in the proof of Theorem 5.1 it follows that the extension to the boundary of
each quasiconformal map f : Sp → Xp can be achieved by a leafwise earthquakes
whose measures vary continuously in the transverse direction for the Fréchet topol-
ogy on earthquake measures. On the other hand, a measured lamination µ on Sp

with compact support gives a quasiconformal map f : Sp → Xp whose extensions to
the boundaries of the leaves agrees with the earthquake Eµ. Thus the earthquake
theorem is true for the punctured solenoid for the space of measured laminations
ML0(Sp) with the compact support on Sp.

We explain how to extend Thurston’s boundary to the Teichmüller space of the
punctured solenoid Sp. We show that the boundary consists of PML0(Sp). By the
extension of the earthquake theorem and by the proof of Theorem 6.2, it is only
necessary to show that the asymptotic rays to  L(T (Sp)) ⊂ H(Sp) are of the form
tW , t > 0, for some W ∈ ML0(Sp). Let αt ∈  L(T (Sp)) be such that 1

t αt → W
as t → ∞. Then the restriction of W to each leaf of Sp is a bounded measured
lamination by the results in [21]. Since W is continuous for the transverse variations,
it follows that W is a measured lamination on Sp. By the above, W ∈ ML0(Sp).
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[18] D. Šarić, Real and Complex Earthquakes, Trans. Amer. Math. Soc. 358 (2006), no. 1,
233-249.

[19] —, Bounded earthquakes, preprint.
[20] —, Infinitesimal Liouville Distributions For Teichmüller Space, Proc. London Math. Soc.

(3) 88 (2004), no. 2, 436-454.
[21] —, Geodesic Currents and Teichmüller Space, Topology 44 (2005), no. 1, 99-130.
[22] —, On quasiconformal deformations of the universal hyperbolic solenoid, available at:

www.math.sunysb.edu/∼saric
[23] D. Sullivan, Linking the universalities of Milnor-Thurston, Feigenbaum and Ahlfors-Bers,

Milnor Festschrift, Topological methods in modern mathematics (L. Goldberg and A.
Phillips, eds.), Publish or Perish, 1993, 543-563.

[24] W. Thurston, Earthquakes in two-dimensional hyperbolic geometry. In Low-dimensional
Topology and Kleinian Groups, Warwick and Durham, 1984 ed. by D.B.A. Epstein, L.M.S.
Lecture Note Series 112, Cambridge University Press, Cambridge, 1986, 91-112.

[25] —, On the geometry and dynamics of diffeomorphisms of surfaces I., Unpublished article,
1975.

[26] —, “The geometry and topology of 3-manifolds”, Princeton University Lecture Notes,
online at http://www.msri.org/publications/books/gt3m.

Institute for Mathematical Sciences, Stony Brook University, Stony Brook, NY

11794-3660

E-mail address: saric@math.sunysb.edu

ftp://ftp.math.sunysb.edu/preprints/ims05-06.pdf
http://www.msri.org/publications/books/gt3m

	1. Introduction
	2. Preliminaries
	2.1. The universal hyperbolic solenoid
	2.2. Earthquakes in the unit disk
	2.3. The Fréchet topology

	3. The convergence of measures in the unit disk
	4. Measured laminations on the universal hyperbolic solenoid
	5. Earthquake theorem
	6. Thurston's Boundary for T(S)
	7. The punctured solenoid
	References

