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1 Introduction

The compact solenoid S (also called the universal hyperbolic solenoid) was
introduced by Sullivan [43] as the universal object in the category of all pointed,
unbranched, finite sheeted coverings of a (base) closed surface of genus at
least two (S can be thought of as a “universal closed surface”). The compact
solenoid S is independent (as a topological space) of the choice of the base
surface in the definition (as long as the genus is at least two).

More explicitly, the compact solenoid S is the inverse limit of the system
of all pointed, unbranched, finite sheeted coverings of a closed surface of genus
at least two. In fact, the inverse limit of an infinite tower of pointed, un-
branched, finite sheeted coverings gives a homeomorphic object as long as the
intersection of all fundamental groups in the tower (when considered as sub-
groups of the fundamental group of the base surface) is trivial. A particularly
interesting tower is obtained by defining the n-th covering in the tower to have
fundamental group equal to the intersection of all subgroups of index at most
n.

Another description of the compact solenoid S is that it is a principal fiber
bundle over a closed surface of genus at least two whose fibers are homeomor-
phic to a Cantor set with a topological group structure such that the base
surface fundamental group is realized as a dense subgroup of the fiber group.
If the base surface is given a fixed hyperbolic metric then the compact solenoid
is explicitly realized as follows (see Section 2.2 or [37]). Let G be a subgroup of
the Möbius group acting on the unit disk D which uniformizes the base surface
and let ω ⊂ D be a fundamental polygon for G. Then there exists a Cantor set
Ĝ with the structure of a topological group and an injective homomorphism
G ↪→ Ĝ whose image is dense in Ĝ (the group Ĝ is defined in Section 2 and
later in the Introduction). The compact solenoid S is the quotient of ω ×D
by the action of finitely many elements of G which pairwise identify the sides
of ω, where the action of these elements on ω ×D is given by a side pairing
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Möbius action on the ω-factor and by right multiplication in the group Ĝ using
the identification of G with its image in Ĝ (on the Ĝ-factor). Thus a neigh-
borhood of a point in the compact solenoid S is given by the product of the
open fundamental polygon

◦
ω and a Cantor set Ĝ. The boundary sides of ω are

identified with the corresponding boundary sides of ω but on different “levels”,
i.e. the second factors (in Ĝ) are different. If we follow the identifications of a
single ω × {t}, for a fixed t ∈ Ĝ, in the quotient we approach any point of S
arbitrary close (because the image of G in Ĝ is dense).

The compact solenoid S is locally homeomorphic to a 2-disk times a Cantor
set; each leaf (i.e. a path component) of S is dense in S and it is homeomorphic
to the unit disk; a distinguished leaf of S is called the baseleaf. Moreover, S
has a unique transverse measure, i.e. a holonomy invariant measure on each
transverse set, which is induced by the Haar measure on the fiber group. The
holonomy map is given by the action of the base surface group on the fiber
group via its natural identification as a subgroup of the fiber.

We give some motivation for the study of the compact solenoid S. The
Ehrenpreis conjecture [13] states that for any two closed non-conformal Rie-
mann surfaces of the same genus greater than 1 and for any ε > 0 there exist
two finite sheeted, unbranched, conformal covers that are (1+ε)-quasiconformal.
Since the universal cover of both surfaces is the unit disk, this is a question
whether finite covers approximate the universal cover. Instead of considering
two Riemann surfaces at the same time and finding their appropriate finite
covers, it is (at least) conceptually more appropriate to have all Riemann
surfaces in a single space. The space is the union of properly normalized em-
beddings in the universal Teichmüller space T (D) of the Teichmüller spaces
of all closed Riemann surfaces covering the base surface. The group of all iso-
morphisms between finite index subgroups of the fundamental group (called
the commensurator of the surface group) acts naturally on the above union
and the Ehrenpreis conjecture is equivalent to the statement that the action
has dense orbits in the union [31]. It is natural to take the closure of the union
in the universal Teichmüller space to obtain a Banach manifold and the action
of the commensurator extends naturally to the closure [31].

Sullivan noticed the connection with the compact solenoid S: instead of
considering Riemann surfaces of different genera as points in a single space
T (D) as well as their limit points in T (D), it is natural to form a single
topological space (the compact solenoid S) using all finite coverings of a base
surface and to express Riemann surfaces of different genus as well as their
limit points in T (D) as different complex structures on the compact solenoid
S. Then the Ehrenpreis conjecture is equivalent to the statement that the
action of the commensurator group Comm(π1(S)) of the base surface group
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π1(S) on the Teichmüller space T (S) of the compact solenoid S has dense
orbits [5], [31].

C. Odden [37] showed that the Modular group Mod(S) of the compact
solenoid S is isomorphic to the commensurator group Comm(π1(S)) of the
fundamental group π1(S) of the base surface S. This is in an analogy with
the classical statement that the group of outer isomorphisms of the closed
surface group is the mapping class group of the surface [8], [32], [2]. Thus,
the compact solenoid S is a natural space for which the commensurator group
is its Modular group. From the group theoretic point of view, the Modular
group Mod(S) ≡ Comm(π1(S)) is describing the “hidden symmetries” of the
surface group [25].

We are also interested in studying complex structures on the compact
solenoid S from the view point of the complex analytic theory of Teichmüller
spaces. The Teichmüller space T (S) is a first example of a Teichmüller space
which is an infinite-dimensional but separable complex Banach manifold. Re-
call that Teichmüller spaces of Riemann surfaces are either finite dimensional
complex manifolds or infinite-dimensional non-separable Banach manifolds. It
appears that the complex analytic and the metric structure of T (S) is quite
different from the Teichmüller spaces of geometrically finite as well as infinite
Riemann surfaces. Inverse limit spaces commonly appear in dynamics [43],
[44], [23], [30] and the compact solenoid is a first non-trivial example of an
inverse limit with interesting Teichmüller space.

The non-compact solenoid Snc (also called the punctured solenoid) is the in-
verse limit of the system of all pointed, unbranched, finite sheeted coverings of
a base punctured surface with negative Euler characteristic [36]. The covering
surfaces are punctured with the covering maps sending punctures to punctures.
If we fill in the punctures, the covering maps become finitely branched at the
punctures. Therefore, the branching in the covering tower is restricted by
allowing it only over the punctures of the base surface (unlike for towers of ra-
tional maps where branching appears to be “wild” [23]). The inverse limit Snc

is a non-compact space because we do not include the backward orbits of punc-
tures in the space, each leaf is homeomorphic to the unit disk D and the ends
of each leaf are universal covers of neighborhoods of punctures on surfaces, i.e.
the ends are horoballs with the induced non-standard topology. The analog of
the Ehrenpreis conjecture for punctured surfaces asks whether every two finite
Riemann surfaces have finite covers which are (1 + ε)-quasiconformal. This
is equivalent to the statement that the Modular group Mod(Snc) has dense
orbits in the Teichmüller space T (Snc) of the non-compact solenoid Snc. In
analogy to the compact case, the Modular group Mod(Snc) is isomorphic to
a subgroup of the commensurator of the base punctured surface group which
preserves the peripheral elements [36]. The existence of ends of leaves allows
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for a combinatorial decomposition of the (decorated) Teichmüller space of Snc

[36] which gives a better understanding of the Modular group Mod(Snc) of the
non-compact solenoid than of the Modular group of the compact solenoid S.

In this chapter, we survey results on the Teichmüller space T (S) of the com-
pact solenoid S regarding its metric structure with respect to the Teichmüller
metric and its complex structure. We also survey results on the Modular group
Mod(S) of the compact solenoid S and the Modular group Mod(Snc) of the
non-compact solenoid Snc. We give more details below.

In Section 2 we give different equivalent definitions of the compact solenoid
S. In addition to defining S as an inverse limit space, we define it as a principal
fiber bundle space as follows. For a fixed Fuchsian group G uniformizing
a closed Riemann surface of genus at least two, we define a profinite group
completion Ĝ of G with respect to the profinite metric. The profinite metric
on G is defined by [37]

dpf (A,B) = e−
1
n ,

where AB−1 is an element of all subgroups of G of index at most n, and there
exists a subgroup of G of index n + 1 which does not contain AB−1. Then
the G-tagged compact solenoid SG is the quotient of D × Ĝ by an action of
G, where G acts by Möbius maps on the unit disk component D and shifts
the levels by acting on Ĝ by right translation in the group. The G-tagged
solenoid SG is homeomorphic to the compact solenoid S. The natural map
from D× Ĝ to the Riemann surface D/G obtained by “forgetting” the second
coordinate and by mapping the first coordinate to its orbit under G projects
to a map from the quotient (D× Ĝ)/G = SG onto D/G; the fibers of the map
are homeomorphic to Ĝ. Thus SG is a Ĝ-fiber bundle over D/G.

A complex structure on the compact solenoid S is by definition an atlas
whose transition maps when restricted to local leaves are holomorphic and are
continuous for the transverse variations of local leaves [43]. Candel [7] proved a
uniformization theorem for laminations which, in particular, implies that each
transversely continuous conformal structure on S has a unique transversely
continuous hyperbolic metric representative. The compact solenoid S is a
fiber bundle over a closed surface such that the restriction to any leaf of the
fiber map is the universal covering of the base surface. Thus, any complex
structure on the base surface lifts to a complex structure on the compact
solenoid S. Such a complex structure has a sub-atlas where the transition
maps are constant in the transverse directions. Nag and Sullivan [31] showed
that every such complex structure is obtained by forming a G-tagged solenoid
SG, for some uniformizing Fuchsian group G of a closed Riemann surface
(see Section 3 for more details). The G-tagged punctured solenoid is formed
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similarly by using the punctured Riemann surface uniformizing Fuchsian group
G (see Section 4).

The Teichmüller space T (SG) of the compact solenoid SG consists of all
marked complex solenoids f : SG → X up to post-composition by conformal
maps and up to homotopy, where G is fixed and f is a differentiable, quasicon-
formal map (see Definitions 5.1 and 5.3). (Equivalently, the Teichmüller space
T (SG) is a quotient of the space of smooth Beltrami coefficients on SG con-
tinuous in the transverse directions.) The Teichmüller distance of [f ] ∈ T (SG)
to the basepoint [id] ∈ T (SG) is the infimum of the logarithm of the quasicon-
formal constants of maps in the homotopy class [f ]. The Teichmüller metric
is not degenerate, namely T (SG) is a Hausdorff space (see [43]; see Section 5
for an alternative proof).

The restrictions of complex structures on the marked solenoids f : SG → X
to the baseleaf l of SG defines a map πl : T (SG) → T (D). This map is a
homeomorphism onto its image (a proof is sketched in [43]; see Section 5.2 for
an alternative proof). In fact, a consequence of Theorem 7.1 and McMullen’s
solution [29] to the Kra’s conjecture is that πl is a bi-Lipschitz map onto its
image with constant 1/3.

The study of the Teichmüller metric on T (SG) starts with the Reich-Strebel
inequality (see [41] and Section 6) which estimates the (complex) distortion
(i.e. the Beltrami coefficient) of a quasiconformal self-map of the compact
solenoid SG which is homotopic to the identity in terms of the leafwise Eu-
clidean structures given by the restrictions of holomorphic quadratic differen-
tials on the leaves of SG. The Reich-Strebel inequality is a non-trivial gen-
eralization of Grötzsch’s length-area method for determining extremal maps
between rectangles. In this chapter we give a different proof of the Reich-
Strebel inequality from the proof in [41] (see Theorem 6.1 and its proof).

The consequences of the Reich-Strebel inequality give a better understand-
ing of the Teichmüller metric on T (SG). In Section 6, we summarize conse-
quences related to infinitesimal structure of T (SG) from [41]. In particular, a
Beltrami differential is tangent to a trivial path of Beltrami coefficients (i.e.
it represents a trivial infinitesimal deformation) if and only if it is zero when
paired with all holomorphic quadratic differentials on SG (see Theorem 6.2).
In section 7, we analyze extremal maps in a given homotopy (Teichmüller)
class. A consequence of the Reich-Strebel inequality is that Teichmüller-type
maps (i.e. vertical stretch maps in the natural parameter of a holomorphic
quadratic differential on SG) are extremal in their corresponding homotopy
(Teichmüller) classes (see Theorem 7.1). Moreover, the natural inclusion map
from the Teichmüller space of a closed surface into T (SG) obtained by lifting
a complex structure on the surface to SG is an isometry (see Corollary 7.3).
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We also give an account of the question of the existence of the Teichmüller-
type extremal maps in a given Teichmüller class considered in a joint work of
the author with A. Epstein and V. Markovic [14]. The results for Riemann
surfaces fall into two cases; either every point in the Teichmüller space has
a Teichmüller-type representative for closed and finite punctured surfaces-
Teichmüller’s theorem, or an open, dense subset of the Teichmüller space
has Teichmüller-type representatives for geometrically infinite surfaces [21].
Therefore, in both cases, at least a large subset of the Teichmüller space has
Teichmüller-type representatives. For the Teichmüller space T (SG) of the com-
pact solenoid SG the situation is quite different. In fact, a generic point in
T (SG) does not have Teichmüller-type representatives, i.e. only a set of the
first kind in T (SG) in the sense of Baire has Teichmüller-type representatives
(see [14], or Theorem 7.4 together with a brief account of the proof.) We also
give a necessary condition for a point in T (SG) to have a Teichmüller-type
representative (see [14], or Corollary 7.5).

In Section 8, we survey basic results on the Modular group (see [37], [27]).
The Modular group Mod(SG) is isomorphic to the commensurator group of
the base surface group (see [37] or Theorem 8.3). In a joint work with V.
Markovic, we established that there exist orbits of Mod(SG) in T (SG) with
accumulation points [27]; and that finite subgroups of Mod(SG) are cyclic and
mapping class like (i.e. they are lifts of self-maps of closed surfaces) [27].

In Section 9, we give a quasiconformal definition of the Teichmüller space
T (Snc) of the non-compact solenoid Snc and an equivalent representation-
theoretic definition from our joint work with R. Penner (see [36]). In Section
10, we define the decorated Teichmüller space T̃ (Snc) of the non-compact
solenoid Snc and give its parametrization in terms of lambda lengths (see our
work with R. Penner [36] or Theorem 10.3). We also describe a convex hull
construction for decorations on the punctured solenoid and show that a dense,
open subset of T̃ (Snc) is combinatorially interesting (see [36] or Theorem 10.6
for the punctured solenoid; for punctured surfaces see [15], [34]; see [33] for the
universal Teichmüller space; see [20] for a related construction for punctured
surfaces).

In Section 11, we give a generating set for Mod(Snc) in terms of Whitehead
homeomorphisms and PSL2(Z) (see our work with R. Penner [36] or theorems
11.3, 11.4 and 11.5). Moreover, we define a natural triangulation 2-complex,
show that it is connected and simply connected, and show that the Modular
group Mod(Snc) acts cellularly on it (see our joint work with S. Bonnot and
R. Penner [6] or Theorem 11.6). Using the triangulation complex, we give a
presentation for Mod(Snc) (see [6] or Theorem 11.7).
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2 The compact solenoid

In this section we give two equivalent definitions of the compact solenoid S
which is usually called the universal hyperbolic solenoid [43], [31], [37].

Let (S0, x0) be a fixed closed surface of genus at least two with basepoint x0.
Consider all finite degree, unbranched, pointed covers πi : (Si, xi) → (S0, x0)
up to isomorphisms of covers. The family of such covers has a natural partial
ordering “≤” defined by

(πi, Si, xi) ≤ (πj , Sj , xj)

if there exists a pointed, unbranched, finite degree cover πi,j : (Sj , xj) →
(Si, xi) such that

πj = πi ◦ πi,j .

Given two arbitrary covers πi : (Si, xi) → (S0, x0) and πj : (Sj , xj) →
(S0, x0) from the above family, there exists a third cover πk : (Sk, xk) →
(S0, x0) such that (πi, Si, xi), (πj , Sj , xj) ≤ (πk, Sk, xk). Namely, the family of
all covers πi : (Si, xi) → (S0, x0) is inverse directed; thus the inverse limit of
the family is well defined. Sullivan [43] introduced the compact solenoid S by

S = lim
←−

(Si, xi).

By definition, S ⊂ Πi∈ISi, where I is the index set of coverings, consists of
all y = (yi)i∈I ∈ Πi∈ISi such that whenever (Si, xi) ≤ (Sj , xj) then πi,j(yj) =
yi. The product space Πi∈ISi is compact in the Tychonov topology because
each Si is compact. The subset S is closed in Πi∈ISi and therefore it is also a
compact space.

The compact solenoid S is universal in the sense that it does not depend
on the base surface S0. Namely, if we take the inverse limit of all finite degree
unbranched covers of another closed surface S′0 of genus at least two then it
is homeomorphic to S. (This follows from the fact that the inverse limit of
any given cofinal subsystem of covers is homeomorphic to the inverse limit of
the original system of covers. Recall that a subsystem of covers is cofinal if
any surface in the original system is covered by a surface of the subsystem.)
To show that S is independent of the base surface, it is enough to note that
any two such inverse systems of covers have homeomorphic cofinal subsystems
because there exist two surfaces in these two systems that are homeomorphic.

The universal property of the compact solenoid enables us to consider a
tower of covers of a closed surface of genus at least two instead of all finite
covers (as long as the intersection of all fundamental groups in the tower when
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identified via pointed covers with subgroups of the base surface is the trivial
group; this is required for a tower to be cofinal by the residual finiteness of the
base surface group). For example, we can consider the system of covers given
by the tower of covers whose n-th level surface has fundamental group equal to
the intersection of all index at most n subgroups of the base surface (see [37]).
The choice of the subgroup at the n-th level uniquely (up to isomorphism)
determines the pointed cover of the base surface. For each m > n the group
at level m is a subgroup of the group at level n. Thus the system of covers is
a tower and its inverse limit is homeomorphic to S.

For convenience, we work with the above tower of covers from now on.
Thus we can replace the index set I for the covers by the natural numbers
N, where πj : Sj → S0 factors through a cover πi : Si → S0 if and only if
j > i. Then a point y in S is given by a backward sequence y = (y0, y1, y2, . . .)
with respect to the tower of covers, namely yi ∈ Si and πi,i+1(yi+1) = yi

for i ∈ N ∪ {0}. A neighborhood of a point in S is homeomorphic to a (2-
disk)×(Cantor set). To see this, note that by the definition of the Tychonov
topology a neighborhood of a point y = (y0, y1, y2, . . .) in Πi∈NSi is the set
V (y) consisting of all z = (z0, z1, z2, . . .) such that each zi is in a small ball
Ui(yi) with center yi ∈ Si for all i < i0, with i0 ∈ N fixed, and the rest of the
coordinates of z are arbitrary. If y ∈ S then a neighborhood V (y) ⊂ S is given
by successively taking a single lift Ui(yi) ⊂ Si of a ball U0(y0) ⊂ S0 for all
i < i0, where i0 ∈ N is fixed, and the rest of the coordinates of the points in
V (y) belong to all lifts π−1

i (U0) such that πi,i0 maps them into Ui0 , for i ≥ i0.
The lifts to the tower {Si}i∈N of a ball in S0 are enumerated by the locally finite
tree of all possibilities of lifts from Si to Si+1 for i ∈ N. The local structure of
S is given by taking a 2-disk for each infinite path (without backtracking) in
the tree with the induced product topology, where the 2-disk has the standard
topology, and points in two 2-disks for two different infinite paths are close if
they are close as points in the 2-disk and if the infinite paths follow the same
finite paths for a long time. The set of all infinite paths without backtracking
is a Cantor set and we have completely described the local structure of S.

A path component of S is called a leaf. A local leaf is a path component in
any local chart of the above form (2-disk)×(Cantor set), namely a local leaf
is a 2-disk. Therefore, a (global) leaf of the compact solenoid S is a surface.
There is a natural projection Πi : S → Si, for i ∈ N ∪ {0}, to any surface in
the tower of covers given by

Πi(y0, y1, y2, . . .) = yi,

for y = (y0, y1, y2, . . .) ∈ S. Since the intermediate covers πi,i+1 in the tower
are unbranched, the restriction of the projection Πi to each leaf is an un-
branched covering. We claim that each leaf is simply connected. If a leaf of
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S is not simply connected, then a closed curve which is not homotopic to a
point maps under each Πi to a curve on Si which is not homotopic to a point.
However, the covers in the tower are chosen so that each closed homotopically
non-trivial curve on any surface cannot be lifted to a closed curve in a high
enough cover. (If one considers all finite covers in the definition of S, this
follows because the fundamental group of S0 is residually finite.) Thus each
leaf is a simply connected unbranched cover of closed surfaces. Namely, each
leaf of S is homeomorphic to the unit disk and the restriction of the natural
projection to each leaf is the universal covering map.

2.1 The profinite completion

Denote by G the fundamental group of S0. We define the profinite metric on
G as follows. Let Gn be the intersection of all subgroups of G of index at most
n. There are only finitely many such subgroups and their intersection Gn is
also of finite index. (It is possible that Gn = Gn+1 for some n and we ignore
the repeating groups.) From now on, {Gn}n∈N is a sequence of decreasing (as
sets) subgroups of G of finite index. Each Gn is a characteristic subgroup of
G and in particular a normal subgroup. Since G is residually finite, it follows
that ∩n∈NGn = {id}. We define the profinite distance of A,B ∈ G by

dpf (A,B) = e−
1
n ,

where AB−1 ∈ Gn − Gn+1. In particular, an element of G is close to the
identity in the profinite metric dpf if it belongs to Gn for n large.

We denote by Ĝ the metric completion of G in the profinite metric dpf (see
[37]). Each point of Ĝ is an equivalence class of Cauchy sequences in (G, dpf ).
The multiplication of two sequences is given by multiplying corresponding
elements and the product of two Cauchy sequences is Cauchy. The operation
of multiplying equivalence classes of Cauchy sequences is well-defined and Ĝ
is a group with respect to multiplication. The group Ĝ is homeomorphic
to the Cantor set and there is a natural injective homomorphism of G into Ĝ
obtained by mapping A ∈ G into the equivalence class of the constant sequence
(A,A,A, . . .). The image of G is dense in Ĝ.

Since Ĝ is a compact topological group, there exists a unique left and right
translation measure m on Ĝ such that m(Ĝ) = 1. The measure m is called
Haar measure and it is a positive Radon measure.
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2.2 The G-tagged compact solenoid

At this point we fix a Fuchsian group G such that the Riemann surface D/G
has genus at least two, where D is the unit disk. We describe the compact
solenoid S using the profinite group Ĝ. Consider the product D × Ĝ. The
action of A ∈ G on D× Ĝ is defined by

A(z, t) = (Az, tA−1),

where (z, t) ∈ D×Ĝ and A acts by hyperbolic isometries on the disk component
and by right multiplication by A−1 on the group Ĝ component. It is a fact
that the quotient (D× Ĝ)/G is homeomorphic to the compact solenoid S (see
[37]). The natural projection Π : (D × Ĝ)/G → D/G is given by forgetting
the second coordinate. Thus the fiber over a point in D/G is homeomorphic
to Ĝ. The orbit in D × Ĝ under G of a single disk D × {t} is a leaf of the
solenoid. We define the orbit of D × {id} to be the baseleaf and the orbit of
(0, id) to be the basepoint. After fixing the baseleaf and the basepoint, each
fiber has an identification with Ĝ and the projection Π : (D× Ĝ)/G → D/G
is a Ĝ-bundle.

We define the G-tagged compact solenoid SG by

SG = (D× Ĝ)/G.

Let ω ⊂ D be a fundamental polygon for the action of G on D. Then
ω × Ĝ is a fundamental set for the action of G on D× Ĝ. The action of G is
identifying a boundary side of ω × {t} with a boundary side of ω × {tA−1},
where A ∈ G identifies the boundary side of ω onto another boundary side of
ω. The group G is countable while Ĝ is an uncountable set. Since G glues
together the ω-pieces to make a single leaf, we conclude that SG ≈ S has
uncountably many leaves.

The holonomy of the leaves of the G-tagged compact solenoid SG is given
by the right translation of the group G in the group Ĝ. Since m is an invariant
measure on Ĝ, we conclude that m induces a holonomy invariant transverse
measure on the compact solenoid SG.

3 Complex structures and hyperbolic metrics on the
compact solenoid

A local chart of the compact solenoid S is homeomorphic to a (2-disk)×(Cantor
set). A transition function between two local charts is a homeomorphism from
(an open subset of a 2-disk)×(Cantor set) onto another such set. In particular,
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the restriction of the transition map to each 2-disk is a homeomorphism and
the family of homeomorphisms varies continuously in the Cantor set direction
for the C0-topology on continuous maps.

A complex structure on the compact solenoid S is a choice of charts such
that transition maps are holomorphic when restricted to each local leaf and
vary continuously in the Cantor set direction for the C0-topology. Since maps
are holomorphic, the continuous variation in the C0-topology implies contin-
uous variation in the C∞-topology.

A hyperbolic metric on the compact solenoid S is an assignment of a metric
of curvature −1 to each local leaf such that it varies continuously in the Cantor
set direction and that there is a choice of an atlas whose transition functions
are leafwise isometries (and vary continuously in the Cantor set direction).

It follows from the work of Candel [7] that any conformal structure on
the compact solenoid S contains a unique hyperbolic metric. Any complex
structure on the compact solenoid S corresponds to a conformal structure and
any conformal structure gives a unique complex structure by the continuous
dependence on the parameters of the solution of the Beltrami equation (see
Ahlfors-Bers [1]).

The construction of the G-tagged compact solenoid above provides an ex-
ample of a complex structure on S as well as a hyperbolic metric (by simply
inducing the complex structure and the hyperbolic metric on the leaves of S
from the unit disk D). The local charts of S are chosen to be of the form
D × Ĝ, where D ⊂ D is a small hyperbolic disk such that no two points of
D × Ĝ are in the same orbit of G. The complex structure on the unit disk D
gives complex charts for S where the transition maps between any two charts
D × Ĝ and D1 × Ĝ are constant in Ĝ (namely, they are given by Möbius
maps A ∈ G) and therefore continuous. The hyperbolic metric on D gives a
hyperbolic metric on S which is also constant in the Ĝ direction.

Complex structures on S whose transition maps are locally constant in the
Cantor set direction are called transversely locally constant (TLC) complex
structures. (It is enough to find a subfamily of charts which cover S for
which transition maps are constant in the Cantor set direction.) Similarly,
a hyperbolic metric on S is TLC if there exists a cover of S by charts in
which the hyperbolic metric is locally constant in the Cantor set direction. It
is a fact that any TLC complex structure (hyperbolic metric) is obtained by
taking a G-tagged solenoid, where G is a Fuchsian group uniformization of a
closed surface of a (possibly large) genus greater than two. This follows by the
compactness of S and the fact that each transverse direction corresponds to
the profinite completion of a finite index subgroup of the fundamental group



The Teichmüller theory of the solenoid 13

of a genus two surface (see also [31]). Therefore, the set of all TLC complex
structures on S is given by lifting complex structures on Riemann surfaces.
Sullivan [43] showed that any complex structure on S can be approximated
by TLC complex structure in the C0-topology, which is equivalent to the C∞-
topology.

4 The G-tagged non-compact solenoid

We introduce the non-compact solenoid Snc (see [36]). Since we require that
the topological ends of leaves are well-behaved, our construction immediately
assigns a hyperbolic metric on Snc. It will follow that Snc has finite area in
an appropriate sense.

Let G < PSL2(Z) be such that D/G is the once punctured torus modular
group. Denote by Ĝ the profinite completion of G. Recall that the action of
G on D× Ĝ is given by A(z, t) = (Az, tA−1) for z ∈ D, t ∈ Ĝ and A ∈ G. We
define the non-compact solenoid Snc by

Snc = (D× Ĝ)/G.

A leaf of Snc is the orbit under G of a single disk D × {t}. Let ω be
a fundamental polygon for the action of G on D such that the boundary
edges are infinite geodesics which project to the geodesics on the torus D/G
connecting the puncture to itself. Then ω × Ĝ is a fundamental set for the
action of G on D× Ĝ. The identifications by G on ω× Ĝ are identifying only
the boundary edges in pairs on different levels according to the G-action on
Ĝ.

Any compact subset of Snc is a subset of a compact set of the form ((Dr ∩
ω)× Ĝ)/G, where Dr, 0 < r < 1, is the Euclidean disk of radius r with center
0 and Dr ∩ ω is a compact subset of ω. The non-compact parts on each leaf
(D × {t})/G ≡ D as sets are given by the G-orbit of a single horoball ζ in
D centered at the fixed point of a parabolic element of G. In the induced
topology on the set G{ζ} each horoball accumulates onto itself since it is
preserved by the action of an infinite cyclic group generated by the parabolic
element of G with the fixed point at the center of the horoball. A fundamental
set η in the horoball for the action of the cyclic group is the intersection of
the horoball and the region between a geodesic with endpoint at the center
of the horoball and its image under the generating parabolic map. Then the
corresponding points in η and Cn(η) are close for n ∈ Z with |n| large, where
C ∈ G is the generating parabolic element with fixed point at the center
of the horoball. Moreover, the corresponding points in the horoballs ζ and
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A(ζ) are close provided that A ∈ Gn for n large. Therefore, each leaf of Snc

has countably many topological ends corresponding to the fixed points of the
parabolics in G. The non-compact solenoid Snc has only one end given by the
equivalence class of the set (G(ζ)× Ĝ)/G.

Given a local chart of the form (2-disk)×(Cantor set), there is a transver-
sal identification of local charts. We consider only local charts of the form
D× Ĝ ⊂ D× Ĝ for D a hyperbolic disk sufficiently small such that the projec-
tion map from D×Ĝ to Snc is a homeomorphism. The transverse identification
of local leaves is an isometry because the hyperbolic metric is constant in Ĝ
and it extends to an isometric identification of global leaves. This identifica-
tion is specified by fixing two local leaves of two global leaves. In the above
identification, the ends of leaves correspond to each other. The ends are called
“punctures” by abuse of notation. We say that two punctures of Snc are close
if they correspond to each other under an identification of the leaves on which
they reside where the identification is specified by two local leaves which are
close in a given chart.

The above construction gives a hyperbolic metric on the leaves of Snc which
is transversely locally constant. We will consider an arbitrary non-compact
solenoid X with a hyperbolic metric on leaves which varies continuously for
the transverse variations together with a marking map f : Snc → X . The
marking f is a homeomorphism which is quasiconformal and differentiable on
leaves, varies continuously in the transverse direction for the C1-topology on
differentiable maps and for the quasiconformal topology when global leaves
are identified using local charts as above. In particular, the supremum of
quasiconformal constants over the leaves is bounded. The end of Snc is home-
omorphically mapped onto the end of X . Moreover, the intersection of a leaf of
Snc with the end is quasi-isometrically mapped onto the corresponding leaf of
X . Therefore, our notion of ends being close on the TLC non-compact solenoid
Snc is transferable to an arbitrary non-compact marked solenoid f : Snc → X .

5 The Teichmüller space of the compact solenoid

We define the Teichmüller space T (S) of the compact solenoid S. Let G be
a fixed Fuchsian group such that D/G is a closed Riemann surface of genus
at least two. Let SG be the G-tagged compact solenoid with the induced
complex structure from D/G. The complex structure on the solenoid SG is a
TLC complex structure.

Definition 5.1. A homeomorphism f : S → X of a complex compact solenoid
S onto a complex compact solenoid X is said to be quasiconformal if it is
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differentiable and quasiconformal on each leaf and if it varies continuously in
the transverse direction in the C1-topology on the C1-maps.

By the above definition, the composition g ◦ f of two quasiconformal maps
f : S → X and g : X → Y is quasiconformal.

Remark 5.2. Since S is compact, it follows that the continuity in the C1-
topology for the variations on the local leaves implies the continuity in the
quasiconformal topology on the global leaves. It is necessary to require smooth-
ness of quasiconformal maps in order to preserve quasiconformality under the
composition. One is tempted to require that Beltrami coefficients of leafwise
quasiconformal maps vary continuously in the transverse direction in the essen-
tial supremum norm. However, the chain rule for Beltrami coefficients shows
that the composition of such two maps does not satisfy the same continuity
property unless the quasiconformal maps have additional C1 smoothness and
continuity in the transverse direction in the C1-topology.

Definition 5.3. The Teichmüller space T (SG) of the compact G-tagged solenoid
SG consists of all quasiconformal maps f : SG → X up to an equivalence. Two
quasiconformal maps f, g : SG → X ,Y are Teichmüller equivalent if there ex-
ists a conformal map c : X → Y such that g−1 ◦ c ◦ f : SG → SG is homotopic
to the identity. Denote by [f ] ∈ T (SG) the Teichmüller class of the quasicon-
formal map f : SG → X , i.e. all quasiconformal maps homotopic to f up to
post-composition by conformal maps.

Since the transverse set for S is totally disconnected, any homotopy does
not mix the leaves. Any two homotopic quasiconformal maps of a com-
plex compact solenoid are isotopic through uniformly bounded quasiconformal
maps [27, Theorem 3.1].

Definition 5.4. The Teichmüller distance dT on T (SG) is given by

dT ([f ], [g]) = inf
f1∈[f ],g1∈[g]

1/2 log K(f1 ◦ g−1
1 ),

where K(f) is the supremum of the quasiconformal constants of the restrictions
of f : S → X to the leaves of S. Since f is transversely continuous in the C1-
topology and since each leaf is dense in S, we conclude that K(f) is equal to
the quasiconformal constant on each leaf of S. In particular, the restriction of
f to each leaf has the same quasiconformal constant.

Sullivan [43] showed that the Teichmüller (pseudo-)metric is a proper met-
ric, i.e. that it is not degenerate. We give an alternative proof in this section.
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5.1 The universal coverings of complex compact
solenoids

Recall that the G-tagged complex solenoid SG is given by the quotient of D×Ĝ
under the action of G. The complex structure and the hyperbolic metric on SG

are inherited from D and they are transversely locally constant. The natural
quotient map

π : D× Ĝ → (D× Ĝ)/G ≡ SG

is a local homeomorphism which is leafwise conformal and which varies con-
tinuously in Ĝ for the C0-topology on continuous maps (which is equivalent
to the C∞-topology on conformal maps). The space D × Ĝ is globally much
simpler (a product) than SG. Thus we consider D×Ĝ as a complex “universal
covering” of a TLC solenoid SG and we consider G as the covering group with
its action on D× Ĝ.

Let f : SG → X be a quasiconformal map, where X is a hyperbolic compact
solenoid not necessarily TLC. We form a complex universal covering for X
using the marking map f . We recall (see [41]) that there exists a chart (U ×
T, ψ) of X , where U a disk with center 0, such that ψ ◦ f({0}× Ĝ) = {0}×T .
Then f induces a homeomorphism of Ĝ and T . Consider a family of maps
πX

t : D → X , for t ∈ T , such that πt is an isometry onto a leaf of X (with its
hyperbolic metric), ψ ◦ πX

t (0) = 0 and (ψ ◦ πX
t )′(0) > 0. Then the maps πX

t

fit together to a single map

πX : D× T → X ,

defined by πX(·, t) := πX
t (·). The map πX is a local homeomorphism and a

leafwise isometry. We consider D×T as a hyperbolic (or a complex) “universal
covering” with πX as a cover map [41].

There is a well-defined lift

f̃ : D× Ĝ → D× T

of the map f : SG → X given by the formula f̃(z, t) := (πX
t )−1 ◦ f ◦ π(z, t)

(see [41]).

The group G acts on D × Ĝ as a covering group of SG and we use f̃ to
introduce a conformal covering group for X . Since

πX ◦ f̃ = f ◦ π,

it follows that

πX ◦ f̃ ◦A = πX ◦ f̃
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for all A ∈ G. Let (z, t) ∈ ∆× Ĝ, f̃(z, t) = (w1, t1) ∈ ∆×T and (f̃ ◦A)(z, t) =
(w2, t2) ∈ ∆× T . By the above,

πX(w2, t2) = πX(w1, t1).

Consequently,

(πX)−1(πX(w1, t1))

contains (w2, t2). Note that (πX
t2 )−1 ◦ πX

t1 is an isometry of ∆ × {t1} onto
∆ × {t2} and ((πX

t2 )−1 ◦ πX
t1 )(w1) = w2. We induce an action of A ∈ G on

T by its natural action (by right multiplication) on Ĝ via the identification
ψ ◦ f ◦ π : Ĝ ≡ T . We introduce a covering map AX on the universal covering
∆× T of X corresponding to A by

AX(z, t) = ((πX
tA−1)−1 ◦ πX

t (z), tA−1),

where t, tA−1 ∈ T ≡ Ĝ. The covering map AX is an isometry on each leaf.
Moreover, AX is transversely continuous and f̃ ◦A = AX ◦f̃ from the definition
(see [41]). Then we define GX := f̃Gf̃−1 to be the covering group of X , namely
(D× T )/GX is conformally equivalent to X .

5.2 Beltrami coefficients and holomorphic quadratic
differentials on the compact solenoid

Given a quasiconformal map f : SG → X , there is a corresponding leafwise
smooth (i.e. C1) Beltrami coefficient µ = ∂̄f

∂f which is continuous for the
transverse variations in the local charts for the C1-topology on C1-maps. The
lift f̃ has Beltrami coefficient µ̃ (which is the lift of µ) and it satisfies

µ̃(z, t) = µ̃(Az, tA−1)
A′(z)
A′(z)

, (5.1)

for A ∈ G.

More generally, if g : X → Y is a quasiconformal map of complex compact
solenoids then there exists a lift g̃ : D×T1 → D×T2 to their universal covers.
The Beltrami coefficient ν of g lifts to the Beltrami coefficient ν̃ on D × T1

such that

ν̃(z, t) = ν̃(AX(z, t))
A′X(z, t)
A′X(z, t)

,

for AX ∈ GX , where AX(z, t) = (At
X(z), tA−1) and A′X(z, t) is the leafwise

derivative. Note that A′X(z, t) depends on t.
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By the compactness of SG, the continuity in the local charts for the trans-
verse variations of a Beltrami coefficient µ on SG implies that

‖µ̃(·, t)− µ̃(·, t1)‖∞ → 0 (5.2)

as t → t1, for all t1 ∈ Ĝ. In the opposite direction, a Beltrami coefficient µ̃
on D× Ĝ which is leafwise C1, which is continuous in the C1-topology for the
variations in Ĝ on the compact subsets of D × Ĝ and which satisfies (5.2) is
the lift of the Beltrami coefficient of a quasiconformal map f : SG → X , where
X is determined by µ̃.

Let f̃ µ̃ denote the leafwise solutions to the Beltrami equation with the
coefficient µ̃ on D× Ĝ normalized such that 1, i and −1 are fixed on each leaf.
Then f̃ µ̃ conjugates the action of G on D× Ĝ to the action of Gµ̃ on D× Ĝ.
Let X µ = (D× Ĝ)/Gµ̃ be the induced complex solenoid. Then f̃ µ̃ projects to
a quasiconformal map fµ : SG → X µ.

Definition 5.5. A transversely locally constant (TLC) Beltrami coefficient on
a TLC compact solenoid S is a leafwise Beltrami coefficient which is constant
in the transverse direction in some atlas of local charts.

Definition 5.6. A holomorphic quadratic differential ϕ on a complex com-
pact solenoid X is a leafwise holomorphic quadratic differential which varies
continuously in the local chart in the transverse direction in the C0-topology.
Equivalently, a leafwise holomorphic function ϕ̃ on the universal cover D× T
of X is a lift of a holomorphic quadratic differential if

ϕ̃(z, t) = ϕ̃(AX(z, t))A′X(z, t)2 (5.3)

for AX ∈ GX and if

‖ϕ̃(·, t)− ϕ̃(·, t1)‖Bers → 0 (5.4)

as t → t1, where ‖f‖Bers := supz∈D |ρ−2(z)f(z)| with ρ the Poincaré density
on D (see [41]).

Definition 5.7. A transversely locally constant (TLC) holomorphic quadratic
differential on a complex compact solenoid S is a leafwise holomorphic quadratic
differential which is constant in the transverse direction in some atlas of local
charts.

Using the above notion of Beltrami coefficients on the universal cover of
SG we give an equivalent definition of the Teichmüller space T (SG).

Definition 5.8. The Teichmüller space T (SG) of the compact G-tagged
solenoid SG consists of all smooth Beltrami coefficients µ̃ on D × Ĝ which
vary continuously in the C1-topology on compact subsets of D× Ĝ and which
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satisfy (5.1) and (5.2) modulo an equivalence relation. Two Beltrami coeffi-
cients µ̃ and ν̃ are (Teichmüller) equivalent if there exists a conformal map
c : X µ → X ν such that (fν)−1 ◦ c ◦ fµ : SG → SG is isotopic to the identity
map.

5.3 The restriction map πl

We recall the definition of the restriction map πl : T (SG) → T (D) from [43].
Given a quasiconformal map f : SG → X , the restriction to the baseleaf f |l :
l → f(l) maps l to the leaf f(l) ⊂ X . We fix a conformal identification l ≡ D
and take an arbitrary conformal identification f(l) ≡ D. Then f |l : D → D
is well-defined up to post-composition with a conformal map of D (because
of the choice f(l) ≡ D). This gives a well-defined element of the universal
Teichmüller space T (D). Sullivan [43] showed that π|l is injective. We give a
different proof.

Theorem 5.9. Let l be the baseleaf of the G-tagged compact solenoid SG. Let
πl : T (FG) → T (D) be defined by the restriction of the hyperbolic metric on
SG to the baseleaf l, where l is identified with the unit disk D. Then πl is
injective.

Proof. It is enough to show that if πl([f ]) is trivial in T (D) then [f ] ∈ T (SG)
is trivial. Let f̃ : D × Ĝ → D × T be a lift of f : SG → X to the universal
coverings. Denote by GX the covering group of X . Our assumption implies
that f̃ |S1×{id} is a Möbius map. By the invariance of f̃ we conclude that
f̃ |S1×{A} = (AX)−1 ◦ f̃ |S1×{id} ◦ A is also a Möbius map, for each A ∈ G.
Since G is dense in Ĝ, we conclude that f̃ is a Möbius map on the boundary
S1 × {t}, t ∈ Ĝ, of each leaf.

Thus, when restricted to a leaf, f̃ is homotopic to a Möbius map (where
different leaves can give different Möbius maps). We need to show that there
is a homotopy Ft, 0 ≤ t ≤ 1, of f̃ to Möbius maps on leaves such that F1 = f̃ ,
Ft|S1×Ĝ = f̃ |S1×Ĝ for each t, and the Beltrami coefficients µ̃t of Ft satisfy
(5.1) and (5.2), for each t.

Let µ̃ be the Beltrami coefficient of f̃ . Then we consider a path of Beltrami
coefficients t 7→ ν̃t = tµ̃, for 0 ≤ t ≤ 1, which satisfy (5.1) and (5.2). Then ν̃t

converges to the trivial Beltrami coefficient as t → 0 and the path of properly
normalized solutions t 7→ f̃ ν̃t give a homotopy from f̃ ν̃1 = f̃ to the Möbius
maps. However, we are not guaranteed that f̃ ν̃t extends to the Möbius maps
(determined by f̃) on the boundaries S1 × Ĝ for 0 < t < 1. Let ht be the
boundary map for f̃ ◦ (f̃ µ̃t)−1. Let gt be the leafwise barycentric extensions of
ht, for 0 ≤ t ≤ 1. Then g1 = g0 = id because h1 = h0 = id on the boundary
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(by the properties of the barycentric extension [9]). The Beltrami coefficients
of gt ◦ f̃ ν̃t satisfy (5.1) and (5.2) for each t (again by the properties of the
barycentric extension [9]) and the path t 7→ gt ◦ f̃ ν̃t gives a homotopy from
f̃ = g1 ◦ f̃ ν̃1 to the leafwise Möbius maps. (The idea of using barycentric
extensions to find homotopies first appears in [12] for the plane domains, and
it is utilized in [27] to show that homotopic maps of the compact solenoid are
isotopic as well.)

Sullivan [43] showed that the Teichmüller metric on T (SG) is a proper
metric. We use the above theorem to give an alternative argument.

Theorem 5.10. The Teichmüller metric on the Teichmüller space T (SG) of
the compact solenoid is a proper metric, i.e. T (SG) is a Hausdorff space for
the Teichmüller metric.

Proof. Note that πl : T (SG) → T (D) is a contracting map with respect to
the Teichmüller metrics on T (SG) and T (D). Since the Teichmüller metric on
T (D) is a proper metric the theorem follows.

5.4 The complex Banach manifold structure on T (SG)

The Teichmüller space T (SG) embeds as an open subset in a complex Banach
vector space as follows. Denote by f̃ : D× Ĝ → D×T the lift to the universal
covering of a quasiconformal map f : SG → X . The Bers embedding for the
universal Teichmüller space assigns to each f̃ |D×{t} a holomorphic quadratic
differential ϕ̃|D×{t}. The holomorphic quadratic differential ϕ̃ satisfies (5.4)
because of the continuous dependence on the parameters of the solutions to
the Beltrami equation [1] and it satisfies (5.3) because the Beltrami coefficient
of f̃ satisfies (5.1).

We denote by B(SG) the space of all holomorphic quadratic differentials on
SG which vary continuously in the transverse direction in the local charts for
the C0-topology. Note that B(SG) is conformally isometric to the space of all
leafwise holomorphic functions on ϕ̃ : D× Ĝ → C that are uniformly leafwise
Bers bounded, i.e. supt∈Ĝ ‖ϕ̃|D×{t}‖Bers < ∞, and that vary continuously in
the transverse direction for Bers norm, i.e. ‖ϕ̃|D×{t} − ϕ̃|D×{t1}‖Bers → 0 as
t → t1, for each t1 ∈ Ĝ, and that are invariant under the action of G, i.e. they
satisfy (5.3) (see [41]).

Therefore, we obtained a map Π : T (SG) → B(SG) which is injective be-
cause the Bers map for the universal Teichmüller space is injective and the
restriction map πl is injective. Moreover, Π is a homeomorphism onto an open
subset of B(SG) (see [41] for details). Note that Π : T (SG) → B(SG) is the
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quotient of the holomorphic map Π̃ : U∞
s (SG) → B(SG), where U∞

s (SG) is
the unit ball in the space L∞s (SG) of all leafwise smooth, transversely contin-
uous Beltrami differentials with the essential supremum norm and where Π̃ is
obtained by taking the leafwise Bers embedding construction as above. Thus
we define Π : T (SG) → B(SG) to be a complex global chart for T (SG). For
details see Sullivan [43].

Since T (SG) has a complex structure, there is a well-defined Kobayashi
pseudometric on T (SG). The Kobayashi pseudometric is the largest metric
on T (SG) which makes all holomorphic maps from the unit disk with the
Poincaré metric into T (SG) weakly contracting. It is a well-known fact that
the Kobayashi metric coincides with the Teichmüller metric for the Teichmüller
spaces of Riemann surfaces (see [40], [17]). We showed that the same is true
for T (SG) [41].

Theorem 5.11. On the Teichmüller space T (SG) of the universal hyperbolic
solenoid SG, the Kobayashi pseudometric equals the Teichmüller metric. In
particular, the Kobayashi pseudometric is a metric.

6 The Reich-Strebel Inequality

The study of the Teichmüller metric on Teichmüller spaces of Riemann sur-
faces depends on the Reich-Strebel inequality which is a (highly non-trivial)
generalization of the length-area method for finding extremal maps between
quadrilaterals. We give a proper generalization of the Reich-Strebel inequality
for the marked compact solenoid X from [41]. If ϕ is a transversely continuous
holomorphic quadratic differential then |ϕ| is a leafwise area form on X . The
product |ϕ|dm is a measure on X . Recall that m is the Haar measure on the
profinite completion group Ĝ of G and that the transverse sets in the local
charts for X are identified with Ĝ.

Definition 6.1. Let ϕ be a holomorphic quadratic differential on a complex
compact solenoid X . Then

‖ϕ‖L1(X ) :=
∫∫

X
|ϕ|dm

Definition 6.2. The space of all holomorphic quadratic differentials on a
complex compact solenoid X is called A(X ).

The proof of the Reich-Strebel inequality for the closed solenoid used a
careful approximation argument (of holomorphic quadratic differentials and
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complex solenoids by TLC holomorphic quadratic differentials on TLC com-
plex solenoids) in [41] and we give a different proof below utilizing an idea of
Gardiner [17, Section 2] for the proof in the closed surface case.

Definition 6.3. A Beltrami coefficient µ on a complex solenoid X is called
Teichmüller trivial if it is equivalent to the trivial coefficient 0, i.e. the solution
of the Beltrami equation is homotopic to a conformal map.

Theorem 6.4. (Reich-Strebel inequality) Let ϕ be a holomorphic quadratic
differential on the solenoid X and let µ be a Teichmüller trivial Beltrami co-
efficient. Then

‖ϕ‖L1(X ) ≤
∫

X

∣∣∣1 + µ ϕ
|ϕ|

∣∣∣
2

1− |µ|2 |ϕ|dm. (6.1)

Proof. Let ϕ ∈ A(X ) and let f : X → X be the quasiconformal map whose
Beltrami coefficient is µ. Then f is homotopic to the identity on X and its
restriction to each leaf is homotopic to the identity. Since ϕ is a holomorphic
function on each leaf, the set of zeroes of ϕ on each leaf is at most countable
and they accumulate at the boundary of the leaf. Thus, the set of critical
vertical (as well as horizontal) trajectories is countable on each leaf and does
not influence the integration of |ϕ| on compact subsets of a leaf.

For a given closed arc α ⊂ X , we denote by hϕ(α) the height of α, namely
the length in the metric |Im(

√
ϕ(z, t)dz)| given in the local chart. We claim

that there exists M > 0 such that for any compact segment β on a non-critical
vertical trajectory we have

hϕ(β) ≤ hϕ(f(β)) + M. (6.2)

Let t 7→ ft be a homotopy from f0 = id to f1 = f . Recall that if γ is a path
in S connecting the endpoints of β then hϕ(β) ≤ hϕ(γ) (see, for example, [42]
or [17, Lemma 2, page 41]).

Let p be the initial point and let q be the terminal point of β. We define
a path γ connecting the endpoints of β by taking γ0 : t 7→ ft(p) followed by
f(β) followed by γ1 : t 7→ f1−t(p). Then

hϕ(β) ≤ hϕ(γ0) + hϕ(f(β)) + hϕ(γ1).

We consider the displacement function d : X → R for the map f . Since f is
homotopic to the identity and since the transverse set is totally disconnected,
it follows that f fixes each leaf. Then d(p), for p ∈ X , is defined by taking
the leafwise distance in the metric

√
|ϕ||dz| from p to f(p). The displace-

ment function d is continuous because ϕ varies continuously for the transverse
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variations in charts and f is continuous as well for the transverse variations.
Since S is a compact space, there exists a maximum M1 for the displacement
function d. Then, from the above inequality, we obtain the desired inequality
(6.2) by using the above triangle inequality for heights, by observing that the
height hϕ of a curve is shorter that the distance in the above metric

√
|ϕ||dz|

and by taking M = 2M1.

We claim that each ray of a non-critical vertical trajectory of ϕ is of infinite
length. To see this, assume that a ray r of a non-critical vertical trajectory
is of finite length in the

√
|ϕ||dz| metric, namely hϕ(r) = h < ∞. Then let

0 < un < h be an increasing sequence of parameters for r with un → h such
that r(un) converges to a point q ∈ X (there is a convergent sequence by the
compactness of X ). Then either q belongs to the same leaf as r or to a different
leaf. We consider both cases below.

If q belongs to the same leaf as r then a standard argument shows that
q must be a zero of ϕ [42], [17]. This implies that r is critical which is a
contradiction.

If q belongs to another leaf, then q must be a zero of ϕ as well. Otherwise,
there would exist a neighborhood of q in X in which ϕ does not have any zeroes.
This neighborhood can be chosen to consists of small disks with fixed radius
in the metric

√
|ϕ||dz| centered at a transverse neighborhood of q. But r has

to enter this neighborhood intersecting the disks of half the radius infinitely
many times. This implies that r has an infinite length which is a contradiction.

Therefore q is a zero of ϕ. Then there exists a neighborhood of q in X
consisting of disks with small fixed radius around a transverse neighborhood
of q such that all zeroes of ϕ in this neighborhood are in the disks of 1/3 the
radius. Note that r has to enter infinitely many times in the smaller disks and
exit the larger disk. In particular, r crosses infinitely many times the annulus
whose outer boundary is the boundary of the larger disk and whose inner
boundary is the boundary of the smaller disk. The holomorphic quadratic
differential has no zeros in the annulus. It follows that the length of r is
infinite, which is again a contradiction. Thus r has infinite length.

At this point we modify the standard arguments in [17] to the compact
solenoid X . On the set of points p ∈ X which do not lie on the critical vertical
trajectories of ϕ, we define the function

g(p) = hϕ(f(βp))
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where βp is a compact vertical segment with center p and length b. By a
change of variable, we obtain

g(p) =
∫

βp

|Im(
√

ψdz)|,

where ψ = (ϕ ◦ f)f2
z (1− µϕ

|ϕ| )
2 is a quadratic differential on X . At this point,

we write all the integration in terms of the natural parameter ζ = ξ + iη for
ϕ. Then

∫

X
g(p)dξdηdm = b

∫

X
|Im

√
ψ|dξdηdm

by Fubini’s theorem. By (6.2), we obtain b − M ≤ ∫
βp
|Im(

√
ψdζ)| for p ∈

X . By integrating both sides of the above inequality over X with respect to
measure dξdηdm, we obtain

b−M

b

∫

X
dξdηdm ≤

∫

X
|Im

√
ψ(ζ)|dξdηdm.

By letting b → ∞ and inserting |
√

ϕ(ζ)| = 1 under the integral on the right,
we obtain

∫

X
|ϕ|dm ≤

∫

X
|√ϕ

√
ψ|dm,

and after substituting the expression for ψ and using Cauchy-Schwarz’s in-
equality, we obtain the desired inequality called Reich-Strebel inequality.

We consider equivalence classes of Beltrami coefficients on the compact
solenoid SG as elements of the Teichmüller space T (SG). If f : SG → X is a
marked solenoid and µ is a Beltrami coefficient on X , then there is a marked
solenoid fµ ◦ f : SG → X µ such that the Beltrami coefficient of fµ : X → X µ

is µ. Then the class of the Beltrami coefficient of fµ ◦ f determines a point
in T (SG). In this sense, we consider the class of a Beltrami coefficient on a
marked solenoid X as an element of T (SG).

A derivative of a path of Beltrami coefficients on a marked compact solenoid
X is called a Beltrami differential (when the derivative exists) and it is con-
sidered as a representative of a tangent vector to T (SG) at the point X . A
Beltrami differential has finite essential supremum norm while a Beltrami co-
efficient have essential supremum norm less than 1.

One important question is when do two Beltrami differentials on X repre-
sent the same tangent vector. The Reich-Strebel inequality gives the answer
(see [41]) similar to the Riemann surface case. We say that a Beltrami coeffi-
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cient µ on a complex solenoid X is infinitesimally trivial if
∫

X

µϕdm = 0

for each holomorphic quadratic differential ϕ on X .

Theorem 6.5. A smooth Beltrami differential ν on a complex solenoid X
is infinitesimally trivial if and only if there exists a holomorphic curve µs of
Teichmüller trivial smooth Beltrami coefficients on X such that µs = sν+O(s2)
in the essential supremum norm on X .

Denote by L∞s (X ) the space of all smooth Beltrami differentials on X that
vary continuously in the transverse direction for the C∞-topology. Denote by
N(X ) the space of infinitesimally trivial smooth Beltrami differentials. The
above theorem identifies the space of tangent vectors at [f : SG → X ] ∈
T (SG) with L∞s (X )/N(X ). Since L∞s (X ) and N(X ) are not complete, it is
not obvious that the tangent space is a complete vector space.

Recall that A(X ) is the space of all (transversely continuous) holomorphic
quadratic differentials on X . We introduce a surjective continuous linear map
P : L∞s (X ) → A(X ), where A(X ) is equipped with the Bers norm. Note
that L∞s (X ) is identified with the space of all essentially bounded leafwise
smooth function µ̃ on the universal cover D× T of X that are continuous for
the transverse variations in the C∞-topology and for the essential supremum
norm, i.e.

‖µ̃(z, t)− µ̃(z, t1)‖∞ → 0

as t → t1 for all t1 ∈ T , and that satisfy

µ̃(z, t) = µ̃(AX(z, t))
A′X(z, t)
A′X(z, t)

for all AX ∈ GX .

Then P : L∞s (X ) → A(X ) is defined by taking leafwise Bers’ reproducing
formula and noting that the invariance of µ̃ with respect to GX gives the
invariance of the leafwise holomorphic functions P (µ̃) with respect to GX . The
transverse continuity of P (µ̃) follows by the continuity of the Bers’ reproducing
formula.

We showed [41] that P induces a linear isomorphism P̄ from the tangent
space at the point [f : SG → X ] ∈ T (SG) onto A(X ).

Corollary 6.6. The map P : L∞s (X ) → A(X ) induces a continuous linear iso-
morphism from the normed space L∞s (X )/N(X ) onto the Banach space A(X )
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equipped with the Bers norm. Consequently, the tangent space L∞s (X )/N(X )
at any point [f : SG → X ] ∈ T (SG) is a complex Banach space.

Thus the tangent space to T (SG) has a nice interpretation in terms of
the harmonic Beltrami differentials as in the case of Teichmüller spaces of
Riemann surfaces. We considered [41] to which extent the duality between
the integrable holomorphic quadratic differentials and tangent vectors carries
from Teichmüller spaces of Riemann surfaces to T (SG). It is worth noting
that A(X ) is a complete space in the Bers norm and it is not complete in the
L1-norm. This accounts for the difference from the Riemann surface case.

Theorem 6.7. The dual A∗(X ) for L1-norm on A(X ) is strictly larger than
the tangent space at [f : S → X ] ∈ T (S).

Denote by A1(X ) the space of integrable, a.e. leafwise holomorphic quadratic
differentials on X . Then A(X ) � A1(X ) and we showed [41] the density state-
ment in the L1-norm.

Theorem 6.8. The closure of A(X ) for the L1-norm is equal to A1(X ).

7 The Teichmüller-type extremal maps

The Teichmüller distance between a point [f : SG → X ] ∈ T (S) and the
basepoint [id] ∈ T (SG) is the infimum of the logarithms of the quasiconformal
constants of all maps homotopic to f . A map f1 ∈ [f ] is called extremal if it
has the least quasiconformal constant in the homotopy class [f ]. If f1 ∈ [f ] is
extremal then

d([f ], [id]) = 1/2 log K(f1).

A Beltrami coefficient µ on SG is called extremal if its corresponding quasi-
conformal map is extremal.

Given a holomorphic quadratic differential ϕ on X , the Beltrami coefficient
k |ϕ|ϕ is called a Teichmüller-type Beltrami coefficient. The corresponding qua-

siconformal map fk
|ϕ|
ϕ is called a Teichmüller-type map; the quasiconformal

constant of fk
|ϕ|
ϕ is K = 1+k

1−k ; in the natural parameter ζ =
√

ϕ, fk
|ϕ|
ϕ is given

by stretching the horizontal direction by a factor
√

K and by shrinking the
vertical direction by a factor 1/

√
K.

An important consequence of the Reich-Strebel inequality is that the Te-
ichmüller-type Beltrami coefficients are extremal in their classes [41]. In fact,
a path of Teichmüller-type Beltrami coefficients gives a geodesic in T (SG).
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Theorem 7.1. Let f : SG → X be a quasiconformal map and let ϕ 6= 0 be
a holomorphic quadratic differential on X . Then the path t 7→ t |ϕ|ϕ , −1 <

t < 1, of Teichmüller type Beltrami coefficients on X gives a geodesic (in
the Teichmüller metric) through the point [f ] ∈ T (SG). In addition, any two
points on this geodesic have no other geodesics connecting them.

Remark 7.2. Note that ϕ ∈ A(X ) can have zeros on X which makes Te-
ichmüller-type Beltrami coefficient discontinuous at these points. Strictly
speaking a Teichmüller-type Beltrami coefficient does not belong to a Te-
ichmüller class of smooth Beltrami coefficients on X . However, this is a techni-
cal difficulty which was addressed in [41]. In fact, any zero of ϕ on a leaf of X
has a neighborhood in X such that each local leaf has at least one zero. It can
happen that a multiple zero of ϕ on one leaf is a limit of several simple zeros
of ϕ on nearby leaves. The idea is to replace the Teichmüller-type Beltrami
coefficient in such small neighborhoods of zeros of ϕ by a smooth Beltrami
coefficient such that the new global Beltrami coefficient on X is smooth. This
can be done in such a way that the restriction to each leaf of the original
Teichmüller-type Beltrami coefficient and the new smooth Beltrami coefficient
represent the same point in the universal Teichmüller space T (D) and that
the sequence of new smooth Beltrami coefficients (obtained by shrinking the
neighborhoods of zeros of ϕ to a zero area set) converges to the Teichmüller-
type Beltrami coefficient uniformly on the compact subsets of the complement
of the set of zeros of each leaf. Moreover, the essential supremum norm of
the approximating sequence approaches the norm of the Teichmüller-type Bel-
trami coefficient (see [41, Proposition 5.1]). Thus, Teichmüller-type Beltrami
coefficients are “well” approximated by smooth Beltrami coefficients and we
can consider them as elements of Teichmüller classes as well.

Remark 7.3. We noted that the union of the lifts of the Teichmüller spaces
of all finite unbranched coverings of the base surface to the Teichmüller space
T (SG) of the compact solenoid SG is dense in T (SG). Moreover, if cover-
ing surface S1 is covered by another covering surface S2 then T (S1) embeds
by isometry into T (S2) (a consequence of the Teichmüller’s theorem for sur-
faces). One can consider a metric on T (SG) to be the “limit” metric of the
Teichmüller metrics on the union of the Teichmüller spaces of finite coverings.
The above theorem says that the Teichmüller metric on T (SG) (induced by
taking the quasiconformal constants of the quasiconformal maps between the
compact solenoids) agrees with the “limit” metric (because they agree on a
dense subset). In particular, the extremal quasiconformal map between two
TLC complex solenoids is given by the lift of the extremal maps between the
surfaces (note that the Teichmüller class contains quasiconformal maps which
are not lifts of maps between surfaces).
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We note that Definition 5.8 is equivalent to the following definition of T (SG)
because each leaf is dense in SG. Let G be a Fuchsian group such that D/G is
a closed surface and let Gn be the intersection of all subgroups of G of index
at most n. Then Gn is a finite index characteristic subgroup of G.

Definition 7.4. The Teichmüller space T (SG) of the compact solenoid SG is
the space of all smooth Beltrami coefficients µ on the unit disk D which are
“almost invariant” under G, i.e. which satisfy

sup
A∈Gn

‖µ−A∗(µ)‖∞ → 0

as n → ∞, up to the Teichmüller equivalence in the universal Teichmüller
space T (D).

Remark 7.5. The proof of Theorem 7.1 uses the Reich-Strebel inequality in
an essential way. It is important that we have a transverse measure m on SG

in order to be able to integrate leafwise holomorphic quadratic differentials on
SG. If we use Definition 7.4 for T (SG), then the Teichmüller metric is defined
in terms of the quasiconformal constants of the quasiconformal maps of the
unit disk D. If we consider a holomorphic quadratic differential ϕ on D such
that the Teichmüller type Beltrami coefficient k |ϕ|ϕ is almost invariant, then it
seems difficult to directly show that it is extremal among all equivalent almost
invariant Beltrami coefficients. Thus, even though Definition 7.4 is simpler
than Definition 5.8, it seems beneficial to work with the later definition when
studying extremal maps.

Any TLC Beltrami coefficient µ̃ on SG is a lift of a Beltrami coefficient µ on
a closed Riemann surface Sn in the tower of Riemann surfaces defining a fixed
TLC complex structure of S. By Teichmüller’s theorem for closed surfaces,
there exists 0 < k < 1 and ϕ ∈ A(Sn) such that k |ϕ|ϕ ∈ [µ]. Then ϕ lifts to

a TLC holomorphic quadratic differential ϕ̃ ∈ A(SG) and k |ϕ̃|ϕ̃ ∈ [µ̃]. By the
above theorem, we get immediately that d([µ̃], [0]) = d([µ], [0]). In other words
[41],

Corollary 7.6. Let S be a closed Riemann surface such that the TLC complex
structure on the compact solenoid SG can be obtained by lifting the complex
structure of S. Then the natural inclusion map

i : T (S) → T (SG)

obtained by mapping Beltrami coefficients on S to their lifts on SG is an isom-
etry for the Teichmüller metrics.

The Teichmüller space T (S) of a closed surface S is a finite-dimensional
complex manifold. Any two points [f : S → S1] and [g : S → S2] in T (S) are
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connected by a unique Teichmüller-type geodesic path t 7→ [t |ϕ|ϕ ], 0 ≤ t ≤ k,
for ϕ ∈ A(S1) and some 0 < k < 1.

On the other hand, the Teichmüller space T (D) of the unit disk D is
infinite-dimensional non-separable complex Banach manifold. There are points
in T (D) which are not connected by a Teichmüller-type geodesic path. How-
ever, Lakic [21] observed that an open, dense subset of T (D) is connected by
a Teichmüller-type geodesic to the basepoint [0] ∈ T (D).

The Teichmüller space T (SG) of the universal hyperbolic solenoid SG is also
an infinite-dimensional complex Banach manifold, but it is separable. This is
the first example of a separable Teichmüller space which is the “smallest”
possible infinite-dimensional space. Moreover, even though each leaf is non-
compact, the solenoid SG is a compact space. In addition, the union of lifts
of Teichmüller spaces of all closed surfaces of genus at least two is dense in
T (SG) (see Nag-Sullivan [31] or [41]) and we showed in the above corollary that
each such point is connected to the basepoint by a Teichmüller-type geodesic
path. Based on the above remarks, one would hope that each point in T (SG)
is connected by a Teichmüller-type geodesic to the basepoint. If not, at least
one would expect this to be true for a large subset of T (SG). However, the
situation for T (SG) is unexpectedly different (see [14]).

Theorem 7.7. The set of points in the Teichmüller space T (SG) of the com-
pact solenoid SG which do not have a Teichmüller-type extremal representative
is generic in T (SG). That is, the set of points that do have a Teichmüller-type
representative is of the first kind in the sense of Baire with respect to the
Teichmüller metric.

Proof. For the benefit of the reader, we give a short description of the ideas
involved in the proof. The key idea is to exploit the difference between the L1-
norm and the Bers norm on the space of transversely continuous holomorphic
quadratic differentials A(SG) on SG. In particular, A(SG) is complete for the
Bers norm and incomplete for the L1-norm.

We sketch the proof that there exist points in T (SG) which do not have a
Teichmüller-type Beltrami coefficient representatives. The proof that they are
generic is just an easy modification.

Assume on the contrary that all points in T (SG) have Teichmüller-type
representatives. Let A1 = {ϕ ∈ A(SG); ‖ϕ‖L1 = 1} and let A1(N) = {ϕ ∈
A1; ‖ϕ‖Bers ≤ N}, where N ∈ N. Then A1 = ∪∞N=1A

1(N). We define a map

π : T (S) → A1 ∪ {0}
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by π([µ]) = ϕ if [µ] 6= [0], where k |ϕ|ϕ ∈ [µ] and ϕ is normalized such that
‖ϕ‖L1 = 1, and by π([0]) = 0. Then

T (SG) = ∪∞N=1π
−1(A1(N)) ∪ {[0]}.

We recall (see [14, Proposition 4.2]) that each π−1(A1(N))∪ [0] is closed in
T (SG) under our assumption above. To see this, note that if [kn

|ϕn|
ϕn

] → [k |ϕ|ϕ ]

then kn → k and
∫
S
|ϕn|
ϕn

ϕdm → 1 as n →∞, by the Reich-Strebel inequality.

We assume that [kn
|ϕn|
ϕn

] ∈ π−1(A1(N)). Then
∫
S
|ϕn|
ϕn

ϕdm → 1 implies that

ϕ ∈ A1(N), i.e. [k |ϕ|ϕ ] ∈ π−1(A1(N)).

This implies that at least one π−1(A1(N)) is of the second kind in the sense
of Baire and hence it has an interior. We obtain a contradiction by showing
that each π−1(A1(N)) is nowhere dense, hence of the first kind in the sense of
Baire.

The rest of the proof depends on a geometric construction. Assume that
π−1(A1(N)) has an interior and let [µ] be a TLC point in the interior, namely
µ is equivalent to k |ϕ̃|ϕ̃ with ϕ̃ a lift of a holomorphic quadratic differential ϕ
on a closed Riemann surface S. Denote by Sb a surface obtained by cutting S
along a non-separating simple closed geodesic b. We consider a Zn-cover Sn of
S obtained by cyclically gluing n-copies of the surface Sb. Let 0 < r < 1 and
denote by Sn,r the [rn]/n portion of Sn which is made out of [rn] neighboring
copies of Sb. The boundary of Sn,r consists of two curves which are copies of b.
Let ϕn be a quadratic differential on Sn obtained by lifting ϕ on the Sn,r part
and defining it to be zero on the Sn−Sn,r part. Let ϕ̃n be the lifted quadratic
differential to SG. Note that ϕn and ϕ̃n are piecewise holomorphic. It turns
out that ϕ̃n can be approximated by holomorphic quadratic differential ψ̃n on
SG in the L1-norm such that ψ̃n is a lift of a holomorphic quadratic differential
ψn on Sn (see [14, Lemma 4.3]).

Let S̃n,r denote the pre-image of Sn,r in the solenoid SG. Then α(S̃n,r) =
[nr]/n, where α is the product measure of the leafwise hyperbolic area measure
and the transverse Haar measure m multiplied by an appropriate constant
such that α(SG) = 1. We keep the notation [µ] for the fixed TLC point in the
interior of π−1(A1(N)). Let νn on SG be defined by νn = (1 + r)k |ϕ̃|ϕ̃ on S̃n,r

and νn = k |ϕ̃|ϕ̃ on SG − S̃n,r. By the Reich-Strebel inequality, the Beltrami
coefficient νn when considered as a functional on A(SG) is close to achieving
its norm on a holomorphic quadratic differential which is similar to ψ̃n in the
L1 sense, i.e. the integral of its absolute value when coupled with the Haar
measure over SG − S̃n,r is converging to zero as n →∞.
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If r is small enough then [νn] ∈ π−1(A1(N)). This implies that ψ̃n is in
A1(N). This is a contradiction with

1 =
∫

SG

|ψ̃n|dm ≤ ‖ψ̃n‖Bersα(S̃n,r) +
∫

S−S̃n,r

|ψ̃n|dm

because the right side can be made arbitrary small for n large and r small
enough. Therefore, our starting assumption that all points have Teichmüller-
type extremal representatives is not correct.

To show the stronger statement that the set of points which have Te-
ichmüller-type Beltrami coefficient representatives is of the first kind, it is
enough to assume that it is of second kind and use this set instead of the
whole T (SG) in the above argument.

We recall that each point [µ] ∈ T (SG) is approximated by a sequence
[µn] ∈ T (SG) of TLC points. Each µn is Teichmüller equivalent to a unique
Teichmüller-type Beltrami coefficient kn

|ϕn|
ϕn

, where ϕn is a TLC holomorphic
quadratic differential on SG. We say that [µ] is well-approximated by the TLC
sequence [µn] if

∞∑
n=1

‖knϕn − kn+1ϕn+1‖Bers < ∞.

Theorem 7.8. If a non locally transversely constant point in T (SG) is well-
approximated by transversely locally constant points then it contains a Te-
ichmüller-type extremal Beltrami coefficient representative.

Remark 7.9. We note that the above two theorems have counterparts in the
infinitesimal setting. Namely, a generic vector in the tangent space at the
basepoint [0] ∈ T (SG) does not achieve its norm on A(SG) (when considered
as a linear functional on A(SG)), namely it cannot be represented by a Te-
ichmüller-type Beltrami coefficient k |ϕ|ϕ , for k > 0 and ϕ ∈ A(SG) (see [14,
Theorem 3]). A well-approximated non TLC vector in the tangent space at
the basepoint [0] ∈ T (SG) does achieve its norm on A(SG) (see [14, Theorem
2’]).

The set of real numbers which are not well-approximated by rational num-
bers is of full Lebesgue measure on the real line. From Theorem 7.7 and The-
orem 7.8, we immediately obtain a similar statement for well-approximation
with TLC points in T (SG) (see [14]).

Corollary 7.10. The set of points in T (SG) which are not well-approximated
by transversely locally constant marked complex structures is generic in T (SG).
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8 The Modular group of the compact solenoid

The following definition was given by C. Odden [37]:

Definition 8.1. The Modular group Mod(SG) consists of all quasiconformal
self-maps of SG which preserve the baseleaf up to isotopy.

The Modular group Mod(SG) acts on the Teichmüller space T (SG) by

[f : SG → X ] 7→ [f ◦ g−1 : SG → X ],

where [g : SG → S] ∈ Mod(SG) and [f ] ∈ T (SG).

Definition 8.2. (see [5], [37]) A partial automorphism of the fundamental
group G = π1(S0) is an isomorphism between two finite index subgroups of G.
Two partial automorphisms ψ1 : K1 → H1 and ψ2 : K2 → H2 are said to be
equivalent if they agree on the intersection of their domains. The virtual auto-
morphism group Vaut(G) of the surface group G is by the definition the group
of equivalence classes of partial automorphisms. Note that the virtual auto-
morphism group is also called the (abstract) commensurator group Comm(G)
of the surface group G and we use this notation in the rest of the chapter.

In [5], a natural group in which each element is given by two non-isomorphic
pointed covers of the same degree of the base surface (S0, x0) is shown to act
on the union of Teichmüller spaces of all closed surfaces of genus at least two,
namely the subset of T (S)G consisting of all TLC points. The above group
is naturally isomorphic to the commensurator group Comm(G) of the surface
group G = π1(S0). The action is isometric for the Teichmüller distance on
the union of Teichmüller spaces of all closed surfaces of genus at least two and
it extends by the continuity to the action on the Teichmüller space T (SG).
One should note that our definition of the Teichmüller metric on T (SG) does
not guarantee that the above union embeds isometrically in T (SG); this is a
consequence of the Reich-Strebel theorem for SG (see Corollary 7.6). However,
we do not need to use Corollary 7.6 to show that the continuous extension
is possible; it is enough to note that the Teichmüller metric on the above
union is bi-Lipschitz (with constant 1/3) to the Teichmüller metric on T (SG)
(which is a consequence of the standard result comparing Teichmüller metric
on Teichmüller space of a Riemann surface with the restriction of Teichmüller
metric of the universal Teichmüller space T (D) to its embedding into T (D)
due to McMullen [29], [18]).

The following theorem (see [37]) gives a natural interpretation of the com-
mensurator group Comm(G) in terms of the solenoid.

Theorem 8.3. Let SG be the G-tagged compact solenoid. Fix an identification
of the baseleaf of SG with D. Then the Modular group Mod(S) is isomorphic
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to the commensurator group Comm(G) of the base surface group G. The iso-
morphism is given by the restriction of Mod(SG) to the baseleaf.

The group of baseleaf preserving conformal maps of SG (which is a subgroup
of the Modular group Mod(G)) is identified with the commensurator group
CommPSL2(R)(G) of G in PSL2(R) [37], where CommPSL2(R)(G) consists of all
M ∈ PSL2(R) for which there exist two finite index subgroups K and H of G
such that MKM−1 = H. There are two cases, either G is an arithmetic group
in which case CommPSL2(R)(G) is dense in PSL2(R) or G is not arithmetic in
which case CommPSL2(R)(G) is a finite extension of G. In both cases, the group
of conformal maps of the G-tagged solenoid (D× Ĝ)/G is infinite (because it
contains G in both cases), unlike for Riemann surfaces where it is finite. (Note
that G acts non-trivially on T (SG) even though it acts trivially on T (D/G).)
Biswas and Nag [4] showed that the action of CommPSL2(R)(G) on the G-
tagged solenoid is ergodic (with respect to the product of the hyperbolic area
measure on leaves and the transverse measure) if and only if G is arithmetic.
For any Fuchsian uniformizing group G of a closed Riemann surface, a G-
tagged solenoid represents the lift of the complex structure on D/G to S.
Thus, the isotropy group (in Mod(SG)) of a marked TLC point in T (SG) is
always infinite. We showed [27] that the isotropy group of any non-TLC point
in T (SG) is infinite as well. The basic idea was to show that the right action
of the conformal covering group GX for a non-TLC solenoid X commutes with
the left action of GX .

If a sequence of homeomorphisms of a closed surface converges uniformly
on compact subsets to the identity, then the elements of its tail are isotopic to
the identity. We showed [27] a corresponding statement for the solenoid S.

Theorem 8.4. Let SG be a TLC complex solenoid and let fn : SG → SG be a
sequence of baseleaf preserving quasiconformal self maps of SG that uniformly
converges to the identity map. Then there exists n0 such that fn is homotopic
to a baseleaf preserving conformal self map cn : SG → SG, for all n > n0.

A classical result on closed surfaces states that any two homeomorphisms
which are homotopic are isotopic. Moreover, any two quasiconformal maps of
two Riemann surfaces (possibly geometrically infinite) which are homotopic
through bounded homotopy are isotopic through bounded quasiconformal iso-
topy, namely the quasiconformal constants of maps in the isotopy are uniformly
bounded. We showed [27] similar result for the solenoid.

Theorem 8.5. Let f : X → Y and g : X → Y be two homotopic quasicon-
formal maps of complex solenoids X and Y . Then f and g are isotopic by a
uniformly quasiconformal isotopy.
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We also considered the orbits of Mod(SG) in T (SG). It is an observation
of Sullivan that the Ehrenpreis conjecture is equivalent to the statement that
orbits of Mod(SG) are dense. We showed a weaker statement that orbits have
accumulation points [27].

Theorem 8.6. There exists a dense subset of T (SG) such that the orbit of the
Modular group Mod(SG) of any point in this subset has accumulation points
in T (SG). This subset contains only non-TLC points.

An element h of Mod(SG) is called mapping class like if h conjugates a finite
index subgroup K of the base surface group G onto itself, i.e. hKh−1 = K.
C. Odden [37] showed that if a power hn, n 6= 0, is mapping class like then h
is mapping class like.

The Nielsen realization problem states that any finite subgroup of the Mod-
ular group of a closed surface is realized as a conformal group of a homeomor-
phic Riemann surface. We showed [27] a version of the Nielsen realization
problem for the solenoid SG.

Theorem 8.7. Any finite subgroup of Mod(SG) is cyclic and mapping class
like. Consequently, elements of Mod(SG) which are not mapping class like are
of infinite order.

9 The Teichmüller space of the non-compact solenoid

Let G < PSL2(Z) be such that D/G is the once punctured Modular torus.

Definition 9.1. The G-tagged non-compact solenoid Snc is the quotient of
D× Ĝ by the action of G, where A(z, t) := (Az, tA−1) for (z, t) ∈ D× Ĝ and
A ∈ G.

Definition 9.2. An arbitrary non-compact marked complex solenoid is a com-
plex solenoid X together with a differentiable, quasiconformal map f : Snc →
X which is continuous in the transverse direction in the local charts for the
C1-topology, and whose leafwise Beltrami coefficients are continuous in the
transverse direction for the essential supremum norm when nearby leaves are
identified using the canonical identifications coming from the G-tagged TLC
complex structure of Snc.

The requirement that Beltrami coefficients are close on the whole leaves as
opposed to being close in local charts is necessary because Snc is non-compact.
For marked compact solenoids we obtain the same property from the continuity



The Teichmüller theory of the solenoid 35

in local charts because of the compactness. We introduced [36] the Teichmüller
space T (Snc) of the non-compact solenoid Snc as follows.

Definition 9.3. The Teichmüller space T (Snc) of the non-compact solenoid
Snc is the space of all differentiable, quasiconformal maps f : Snc → X from
the G-tagged solenoid to an arbitrary non-compact complex solenoid X up to
conformal maps of the range and up to homotopy, where f is required to be
continuous in the transverse direction in the local charts in the C1-topology
and the leafwise Beltrami coefficients of f are required to vary continuously on
the global leaves in the essential supremum norm when leaves are canonically
identified using the G-tagged complex structure of Snc.

The definition of T (Snc) is justified by the following density theorem anal-
ogous to the compact case (see [36]).

Theorem 9.4. The union of the lifts of the Teichmüller spaces of all finite
punctured hyperbolic surfaces covering the Modular torus is dense in the Te-
ichmüller space T (Snc) of the punctured solenoid Snc.

We introduced a representation definition of the Teichmüller space T (Snc)
as follows [36]. Consider the space Hom(G × Ĝ, PSL2(R)) of all functions
ρ : G× Ĝ → PSL2(R) satisfying the following three properties:

Property 1: ρ is continuous;

Property 2 [G-equivariance]: for each γ1, γ2 ∈ G and t ∈ Ĝ, we have

ρ(γ1 ◦ γ2, t) = ρ(γ1, tγ
−1
2 ) ◦ ρ(γ2, t);

Property 3: for every t ∈ Ĝ, there is a quasiconformal mapping φt : D → D
depending continuously on t ∈ Ĝ so that for every γ ∈ G, the following
diagram commutes, where ρ(γ, t) ◦ φt(z) = φtγ−1 ◦ γ(z):

D× Ĝ (z,t) 7→(γz,tγ−1)
−−−−−−−−−−−−−−−−→ D× Ĝ

φt × id ↓ ↓ φtγ−1 × id

D× Ĝ (φt(z),t)7→(ρ(γ,t)◦φt(z)=φtγ−1◦γ(z),tγ−1)

−−−−−−−−−−−−−−−−→ D× Ĝ

Since G is discrete, ρ is continuous if and only if it is continuous in its
second variable. Therefore, it is enough to require continuity in the second
variable in Property 1. Property 2 is a kind of homomorphism property of ρ
mixing the leaves; notice in particular that taking γ2 = I gives ρ(I, t) = I
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for all t ∈ Ĝ. Property 3 mandates that for each t ∈ Ĝ, φt conjugates the
standard action of γ ∈ G on D× Ĝ at the top of the diagram to the action

γρ : (z, t) 7→ (ρ(γ, t)z, tγ−1)

at the bottom, and we let Gρ = {γρ : γ ∈ G} ≈ G. Notice that the action of
Gρ on D× Ĝ extends continuously to an action on (D ∪ S1)× Ĝ. We finally
define the solenoid (with marked hyperbolic structure)

Sρ = (D×ρ Ĝ) = (D× Ĝ)/Gρ.

Define the group Cont(Ĝ, PSL2(R)) to be the collection of all continuous
maps α : Ĝ → PSL2(R), where the product of two α, β ∈ Cont(Ĝ, PSL2(R))
is taken pointwise (αβ)(t) = α(t) ◦ β(t) in PSL2(R). α ∈ Cont(Ĝ, PSL2(R))
acts on ρ ∈ Hom(G× Ĝ, PSL2(R)) according to

(αρ)(γ, t) = α(tγ−1) ◦ ρ(γ, t) ◦ α−1(t).

We introduced the topology on Hom(G×Ĝ, PSL2(R)) as follows. Consider
the natural metric d on PSL2(R) induced by identifying it with the unit
tangent bundle of the unit disk D. Let ρ1, ρ2 ∈ Hom(G × Ĝ, PSL2(R)) and
let γ1, . . . , γj ∈ G be a generating set of G. The distance between ρ1 and ρ2

is given by

max
1≤i≤j, t∈Ĝ

d(ρ1(γi, t), ρ2(γi, t)). (9.1)

This metric is not canonical, but any such two metrics induce the same
topology.

Hom′(G × Ĝ, PSL2(R)) := Hom(G × Ĝ, PSL2(R))/Cont(Ĝ, PSL2(R)) is
equipped with the quotient topology of the above topology on Hom(G ×
Ĝ, PSL2(R)). We showed that Hom′(G × Ĝ, PSL2(R)) is naturally home-
omorphic to T (Snc) (see [36]).

Theorem 9.5. There is a natural homeomorphism of the Teichmüller space
T (Snc) of the solenoid Snc with

Hom′(G× Ĝ, PSL2(R)),

given by assigning to each ρ ∈ Hom′(G × Ĝ, PSL2(R)) the corresponding
marked hyperbolic solenoid Sρ.
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10 The decorated Teichmüller space of the non-compact
solenoid

We introduced [36] the decorated Teichmüller space T̃ (Snc) of the punctured
solenoid Snc. Points in T̃ (Snc) are decorations of (homotopy classes of) marked
hyperbolic structures up to isometries. It is convenient to use the presenta-
tion definition of the Teichmüller space T (Snc) for assigning decorations to
hyperbolic metrics.

Recall that a puncture on Snc is an end of a single leaf of Snc. Since Snc

is a G-tagged solenoid with G < PSL2(Z) the punctured torus group, an end
has an explicit description in the universal cover D × Ĝ. Denote by Q̄ ⊂ S1

the set of fixed points of the parabolic elements of G. Then the set of lifts to
D× Ĝ of ends of Snc is identified with Q̄× Ĝ.

Given a quasiconformal map f : Snc → X , the images of the ends in Snc

are the ends of X . A decoration on X is easiest to understand in terms of a
presentation description ρ ∈ Hom(G × Ĝ, PSL2(R)). Let Sρ be a hyperbolic
solenoid obtained from the representation ρ with corresponding quasiconformal
map φ : Snc → Sρ.

We described [36] the punctures of Sρ using the representation ρ. The
quasiconformal map φ : D × Ĝ → D × Ĝ extends continuously to a leafwise
quasi-symmetric map φ : S1 × Ĝ → S1 × Ĝ. Recall that Q̄ ⊂ S1 parametrizes
the endpoints of the standard triangulation of D invariant under PSL2(Z).
We say that a point (p, t) ∈ S1 × Ĝ is a ρ-puncture if φ−1(p, t) ∈ Q̄, and
a puncture of Sρ itself is the Gρ-orbit of a ρ-puncture. A ρ-horocycle at a
ρ-puncture (p, t) is the horocycle in D× {t} centered at (p, t) and a horocycle
on Sρ is the Gρ-orbit of a ρ-horocycle.

We introduce an identification of horocycles with points in the light cone
in Minkowski three space. Recall that Minkowski three space is R3 with the
indefinite pairing < ·, · > whose quadratic form is x2+y2−z2 for (x, y, z) ∈ R3.
The upper sheet of the hyperboloid H := {w = (x, y, z); < w, w >= −1, z >
0} is a model for the hyperbolic plane and rays in the positive light cone
L+ := {u = (x, y, z) :< u, u >= 0, z > 0} are identified with boundary points
to the hyperbolic plane. The hyperbolic distance between w1, w2 ∈ H is equal
to cosh < w1, w2 >. The set of horocycles in H is identified with points of the
positive light cone L+ by the duality w 7→ {u ∈ H; < w, u >= −1} (see [34]).
A topology on the set of horocycles is induced by the correspondence with L+

with its natural topology as a subset of R3.
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Definition 10.1. A decoration on Sρ, or a “decorated hyperbolic structure”
on Sρ, is a function ρ̃ : G× Ĝ× Q̄ → PSL2(R)× L+, where

ρ̃(γ, t, q) = ρ(γ, t)× h(t, q)

with ρ(γ, t) ∈ Hom(G× Ĝ, PSL2(R)), which satisfies the following conditions:

Property 4: for each t ∈ Ĝ, the image h(t, Q̄) ⊆ L+ is discrete and the
center of the horocycle h(t, q) is φt(q), for all (t, q) ∈ Ĝ× Q̄ (using here the
identification of L+ with the space of horocycles);

Property 5: for each q ∈ Q̄, the restriction h(·, q) : Ĝ → L+ is a continuous
function from Ĝ to L+;

Property 6: h(t, q) is ρ invariant in the sense that

ρ(γ, t)(h(t, q)) = h(tγ−1, ρ(γ, t)q).

We introduced [36] the decorated Teichmüller space T̃ (Snc) as follows. Let
Hom(G × Ĝ × Q̄, PSL2(R) × L+) denote the space of all decorated hyper-
bolic structures satisfying the properties above. We define a topology on
Hom(G×Ĝ×Q̄, PSL2(R)×L+). A neighborhood of ρ̃(γ, t, q) = ρ(γ, t)×h(t, q)
consists of all ρ̃1(γ, t, q) = ρ1(γ, t) × h1(t, q) such that ρ1 belongs to a chosen
neighborhood of ρ in Hom(G× Ĝ, PSL2(R)), and the maps h1(·, q) : Ĝ → L+

and h(·, q) : Ĝ → L+ are close in the supremum norm, for each q ∈ Q̄. The
above condition and the invariance Property 6 implies that the set h1(t, Q̄) is
close to the set h(t, Q̄) in the Hausdorff metric, for each t ∈ Ĝ.

Definition 10.2. The decorated Teichmüller space T̃ (Snc) is the quotient

T̃ (Snc) := Hom(G× Ĝ× Q̄, PSL2(R)× L+)/Cont(Ĝ, PSL2(R)),

where α : Ĝ → PSL2(R) acts on ρ̃ by

(αρ̃)(γ, t, q) =
(
α(tγ−1) ◦ ρ(γ, t) ◦ α−1(t)

)× (
α(t)h(t, q)

)
.

It is immediate that the forgetful map T̃ (Snc) → T (Snc) is a continuous
surjection (see [36, Proposition 5.2]).

Given two horocycles in the hyperbolic plane, consider a geodesic connect-
ing their centers. The horocycles intersect the geodesic at two points and the
lambda length of the pair is defined as

√
2 exp δ, where δ is the signed length of

the arc of the geodesic between the two points (see [34], [33]). The sign of δ is
positive if the arc is outside the horoballs and it is negative if the arc is inside
the horoballs. If u, v ∈ L+ represent the horocycles then the lambda length is
given by λ(u, v) =

√− < u, v >.
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Let τ∗ be the Farey tesselation of the unit disk (see, for example, [33], [36],
[35]). Then the vertices of τ∗ are at Q̄ and τ∗ × Ĝ is a tesselation of the
universal cover D × Ĝ of Snc. Given a decoration ρ̃ = (ρ, h) ∈ T̃ (Snc), we
consider the image tesselation φ(τ∗ × Ĝ) of the universal cover D × Ĝ of Sρ

(where φ is the union of quasiconformal maps from Property 3). Then there
is an assignment of lambda length λ(e, t) to each edge (e, t), e ∈ τ∗ and t ∈ Ĝ,
in the tesselation τ∗ × Ĝ by

λ(e, t) = λ(h(p, t), h(q, t)),

where p, q are the endpoints of e. Thus we obtained a lambda length map
λ : T̃ (Snc) → (Rτ∗

>0)
Ĝ, where (Rτ∗

>0)
Ĝ are maps from Ĝ into the function space

Rτ∗
>0 (see [36]). We consider the supremum norm over edges in τ∗ on the

function space Rτ∗
>0. Let Cont(Ĝ,Rτ∗

>0) be the space of continuous functions in
the compact-open topology. In other words,

f ∈ Cont(Ĝ,Rτ∗
>0)

if

sup
e∈τ∗

|f(t)(e)− f(t1)(e)| → 0

as t → t1, for all t1 ∈ Ĝ. Moreover, we define ContG(Ĝ,Rτ∗
>0) to be the

set of G-invariant functions f in Cont(Ĝ,Rτ∗
>0), i.e. f ∈ ContG(Ĝ,Rτ∗

>0) if
f ∈ Cont(Ĝ,Rτ∗

>0) and

f(tA−1)(A(e)) = f(t)(e),

for A ∈ G and t ∈ Ĝ. We obtain [36]

Theorem 10.3. The assignment of lambda lengths

λ : T̃ (Snc) → ContG(Ĝ,Rτ∗
>0)

is a surjective homeomorphism. Namely, ContG(Ĝ,Rτ∗
>0) parametrizes the dec-

orated Teichmüller space T̃ (Snc).

A direct corollary to the above theorem is [36]:

Corollary 10.4. The union of the lifts of the decorated Teichmüller spaces
of all finite punctured surfaces covering the Modular torus is dense in the
decorated Teichmüller space T̃ (Snc) of the non-compact solenoid Snc.

We consider the convex hull construction introduced in [15] and further
utilized in [34] for punctured surfaces and in [33] for the universal Teichmüller
space. The construction in [34] gives a decomposition of the decorated Te-
ichmüller space of a punctured surface similar to [20]. Our approach is based
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on the universal Teichmüller space construction from [33] where the construc-
tion of [20] does not work.

A lambda length function f ∈ Rτ∗
>0 is said to be pinched if there exists

M > 1 such that

1/M ≤ f(e) ≤ M

for all e ∈ τ∗ (see [33]). Let h ∈ (L+)Q̄ and assume that the corresponding
lambda length function λ : e 7→ λ(h(e)), e ∈ τ∗, is pinched. Consider the
image h(Q̄) ⊂ L+ of h and let C(h(Q̄)) denote its convex hull as a subset
of R3. Then the results from [33] give that h(Q̄) is a discrete and radially
dense subset of L+. Moreover, h : Q̄ → L+ projects to a map h̄ : Q̄ → S1

which extends to a quasisymmetric homeomorphism of S1. In addition, the
set of faces of the boundary ∂C(h(Q̄)) of the convex hull C(h(Q̄)) consists of
Euclidean polygons which meet along their boundary edges, the set of faces is
locally finite and boundary edges of faces of ∂C(h(Q̄)) project to a locally finite
geodesic lamination on the hyperbolic plane H whose geodesics have endpoints
in Q̄ (see [33] for more details and proofs).

A decoration ρ̃ ∈ T̃ (Snc) of the non-compact solenoid Snc gives a lambda
length function λ(ρ̃) ∈ ContG(Ĝ,Rτ∗

>0). Namely, we obtain a Cantor set of
lambda lengths λ(ρ̃)(t) : τ∗ → R>0, for t ∈ Ĝ, and note that the lambda
lengths are pinched uniformly in t ∈ Ĝ by the compactness of Ĝ and the
transverse continuity of ρ̃ (see [33, Lemma 6.1]). The above convex hull con-
struction applied to each leaf D × {t} of the universal cover D × Ĝ gives a
Cantor set of convex hulls which in turn produce a Cantor set of geodesic lami-
nations on D×Ĝ which are invariant under the action of G. Denote by τρ̃ such
obtained leafwise geodesic lamination on D × Ĝ. The endpoints of geodesics
in τρ̃ lie in Q̄× Ĝ and we call such geodesic lamination a tesselation if all com-
plementary regions are ideal triangles. In general, the complementary regions
of τρ̃ on leaves can be arbitrary ideal hyperbolic polygons. A tesselation τ of
D×Ĝ such that the restriction to each leaf τ(t) ⊂ D, t ∈ Ĝ, is invariant under
some finite index subgroup K of G is called a TLC tesselation. Equivalently,
τ is a TLC tesselation of D × Ĝ if it is a lift of a tesselation on a Riemann
surface D/K, for some finite index subgroup K < G.

Definition 10.5. Let τ be a leafwise geodesic lamination on D×Ĝ. Denote by
C(τ) the set of all decorations for which the convex hull construction produces
λ, i.e.

C(τ) := {ρ̃ ∈ T̃ (Snc); ∂C(λ(ρ̃)) = τ}.

We showed [36] that generically in T̃ (Snc) convex hull constructions yield
TLC tesselations. In more details,
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Theorem 10.6. The subset C(τ) of T̃ (Snc) is open for each TLC tesselation
τ , and ∪τC(τ) is a dense open subset of T̃ (Snc), where the union is over all
TLC tesselations τ .

11 A presentation for the Modular group of the
non-compact solenoid

We define the Modular group Mod(Snc) of the non-compact solenoid Snc to
consist of (analogously to the compact solenoid) all quasiconformal differen-
tiable baseleaf preserving self-maps of Snc up to isotopy (see [36]). We showed
[36] an appropriate version of the characterization of Mod(Snc) similar to the
compact solenoid [37]. As in Section 9, let G < PSL2(Z) be the once punc-
tured Modular torus group.

Theorem 11.1. The restriction to the baseleaf of Mod(Snc) gives an isomor-
phism of Mod(Snc) with the subgroup of the commensurator group of G con-
sisting of elements which map peripheral elements onto peripheral elements.

The action of the Modular group Mod(Snc) on the decorated Teichmüller
space T̃ (Snc) preserves the decomposition into sets C(τ), for τ a leafwise
geodesic lamination on the solenoid, or equivalently a G-invariant geodesic
lamination on the universal cover. It is convenient to consider TLC tessela-
tion only. Then, as a consequence of the above theorem, the Modular group
preserves the subspace of TLC tesselations. We showed [36] that an analogue
of the Ehrenpreis conjecture in the decorated Teichmüller space T̃ (Snc) is not
correct.

Theorem 11.2. The quotient ∪τC(τ)/MCGBLP (Snc) is Hausdorff, where
the union is over all TLC tesselations τ . Moreover, no orbit under Mod(Snc)
of a point in T̃ (Snc) is dense.

From now on, we restrict the action of Mod(Snc) to the baseleaf. Then
Mod(Snc) preserves the space of all TLC tesselations on D, i.e. it preserves
the space of lifts of all ideal hyperbolic triangulations of all Riemann surfaces
D/K, where K < G is of finite index. The Farey tesselation τ∗ on D is a TLC
tesselation which will be considered as a basepoint in our considerations.

We showed a transitivity statement for the family of TLC tesselations, or
equivalently for the family {C(τ)}τ , where τ belongs to all TLC tesselations
(see [36]).

Theorem 11.3. Mod(Snc) acts transitively on {C(τ) : τ is TLC}.
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Proof. We give a brief description of the proof. It is enough to show that any
TLC tesselation of the unit disk D is mapped onto any other TLC tesselation
of D by a homeomorphism of S1 which conjugates one finite index subgroup of
G onto another finite index subgroup of G. Such a homeomorphism of S1 in-
duces an element of the commensurator group of G which preserves parabolics,
and conversely any element of the commensurator group of G which preserves
parabolics is induced by a homeomorphism of S1. Recall that a TLC tessela-
tion of D is a lift of an ideal triangulation of D/K, where K < G is of finite
index. In particular, the set of ideal vertices of the lifted TLC tesselation of
D is Q̄ and the tesselation is K-invariant.

Moreover, it is enough to show that the Farey tesselation τ∗ can be mapped
by a homeomorphism inducing a parabolics preserving element of the commen-
surator group of G onto any other TLC tesselation of D. Let τ be an arbitrary
TLC tesselation of D which is invariant under a finite index subgroup K of G.
We define a characteristic map for τ by giving an identification of the edges of
τ∗ and τ as follows (see [33]). We choose the edge e0 of τ∗ which joins −1 and
1 and orient it from −1 to 1. Such a distinguished oriented edge is called a
DOE. We choose an arbitrary edge e of τ and give it an arbitrary orientation;
e is a DOE of τ . The characteristic map is built by induction. We first identify
DOEs e0 and e with orientations. The construction of the map proceeds by
identifying complementary ideal triangles of τ∗ and τ according to their rela-
tive positions with respect to DOEs e0 and e; in fact, the identifications of the
triangles uniquely determine an identification of the edges of τ∗ and τ . The
DOEs e0 ∈ τ∗ and e ∈ τ separate D into left and right half-disks according
to their orientations. We identify the immediate left triangle T0 of τ∗ with
respect to e0 to the immediate left triangle T of τ with respect to e. This
forces the identification of boundary edges of T0 and T such that the edges
with endpoints at the initial points of DOEs get identified and the edges at
terminal points of DOEs get identified. To proceed with the construction of
the map, we give orientations to both edges of both triangles T0 and T such
that the triangles are on the right of the edges. Then we continue the identi-
fications of the triangles on the immediate left of the two edges in τ∗ with the
triangles on the immediate left of the two edges in τ as above. This process
continues indefinitely on the left side of DOEs and we do similar identifica-
tions on the right side of DOEs. It is not hard to see that the characteristic
map between the edges of τ∗ and τ extends to a order preserving map h from
the ideal boundary points Q̄ ⊂ S1 onto itself. Then the characteristic map h
extends to a homeomorphism of S1 because the ideal points of the tesselations
are dense in S1 (see [36]).

We show that the characteristic map h : S1 → S1 conjugates a finite index
subgroup H of G onto K (see [36]). Let ω be an ideal fundamental polygon
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for K whose boundary edges are in τ . Then h−1(ω) is an ideal polygon with
boundary edges in τ∗. The boundary sides of ω are identified in pairs by
elements of K and we consider the corresponding boundary sides pairs in
h−1(ω). Since PSL2(Z) acts freely and transitively on the oriented edges of τ∗,
there exist unique maps in PSL2(Z) which identify corresponding boundary
side pairs of h−1(ω) with the correct orientation such that the quotient is
homeomorphic to D/K. Let H be the subgroup of PSL2(Z) generated by
these elements. Then h conjugates H onto K (see [36]).

We considered the isotropy group in Mod(Snc) of a single TLC tesselation
of D. A basic result states that any orientation preserving homeomorphism of
S1 which fixes the Farey tesselation is necessarily an element of PSL2(Z) (see
[36, Lemma 7.3]). Then

Theorem 11.4. The isotropy subgroup in Mod(Snc) of τ , for τ a TLC tes-
selation, is quasiconformally conjugate to PSL2(Z). The isotropy subgroup of
τ∗ is PSL2(Z).

Let τ be a TLC tesselation of D which is invariant under K < G. Fix
an edge e of τ . Then e is on the boundary of exactly two complementary
ideal triangles of τ . The union of the two triangles is an ideal quadrilateral
P ⊂ D whose one diagonal is e. If no two edges in the set K{e} are immediate
neighbors, then the operation of changing diagonals K{e} along the orbit
K{P} of quadrilaterals is well-defined and produces a new TLC tesselation
which is also invariant under K. Such an operation is called a K-equivariant
Whitehead move (see [36]). This is a lift to the unit disk D of a classical
Whitehead move on surface D/K considered by Hatcher and Thurston [19],
Harer [20] and Penner [34]. Penner [33] also considered Whitehead moves on
D without the equivariance property.

The above transitivity result implies that any TLC tesselation of D can
be mapped by an element of Mod(Snc) to its image under an equivariant
Whitehead move. An element of Mod(Snc) which achieves this is not unique;
the ambiguity is up to pre-composition by an element of Mod(Snc) which fixes
the initial tesselation. If we are given a DOE e1 on the initial TLC tesselation
τ , then a DOE e2 on the image tesselation τ1 under a K-equivariant move on
K{e} is determined by e2 := e1 if e1 /∈ K{e}, or otherwise e2 := f1, where
f1 is the other diagonal in the quadrilateral containing e1 oriented such that
(e1, f1) is a positive basis at their intersection point. In this case the element
of Mod(Snc), called the Whitehead homeomorphism, is uniquely determined
by mapping DOE onto DOE. Let hτ and hτ1 be the characteristic maps for
τ and τ1, namely hτ (τ∗) = τ , hτ (e0) = e1, hτ1(τ∗) = τ1 and hτ1(e0) = e2,
where e0 = (−1, 1) is DOE of τ∗. Then the above Whitehead homeomorphism
is given by hτ1 ◦ h−1

τ (see [36]).
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A basic fact due to Thurston, Hatcher, Harer and Penner is that any two
ideal triangulations of a punctured surface are connected by a sequence of
Whitehead moves. Therefore, if two TLC tesselations are invariant under K
then they can be connected by a sequence of K-equivariant moves. If one TLC
tesselation is invariant under K1 and the other is invariant under K2 then they
can be connected by (K1∩K2)-equivariant Whitehead moves (because they are
both invariant under K1 ∩K2). This transitivity of all equivariant Whitehead
moves on the set of TLC tesselations allows us to give generators of Mod(Snc)
(see [36]). A composition of Whitehead homeomorphisms is called geometric if
they are all K-equivariant, for a fixed subgroup K, and they are formed from
a geometric sequence of Whitehead moves. We obtained [36]

Theorem 11.5. Any element of the modular group Mod(Snc) can be written
as a composition w ◦ γ, where γ ∈ PSL2(Z) and w is a geometric composition
of K-equivariant Whitehead homeomorphisms for some fixed K.

We describe a presentation of the Modular class group Mod(Snc) from [6].
We first define a 2-complex called the triangulation complex X (see [6]). The
vertices are all TLC tesselations of the unit disk D. We already showed that
Mod(Snc) preserves the set of vertices X0 and it acts transitively on them.
The Farey tesselation τ∗ is the basepoint of X .

The set of edges X1 is first defined at the base point τ∗. A vertex τ ∈
X0 is connected to the basepoint τ∗ if τ is obtained from τ∗ by a single K-
equivariant Whitehead move, for some finite index subgroup K of G. An edge
at an arbitrary τ ∈ X0 is the image under hτ ∈ Mod(Snc) of an edge at the
basepoint. Therefore, an edge connecting arbitrary τ, τ1 ∈ X0 is obtained
by a single “generalized” Whitehead move, namely the move is equivariant
under a conjugate of K, [G : K] < ∞, by h : S1 → S1 which induces an
element of Comm(G). The difference from a (regular) Whitehead move is that
h conjugates a proper subgroup K1 of K onto another subgroup H1 of G and
the move is along the orbit of an edge for hKh−1 which is not a subgroup
of G. However, the generalized hKh−1-equivariant Whitehead move can be
decomposed into finitely many H1-equivariant Whitehead moves. On the other
hand, the image at the basepoint of an edge at an arbitrary point is necessarily
obtained by a (regular) Whitehead move [6]. Thus we do not introduce new
edges at the basepoint τ∗. The set of edges X1 is invariant under Mod(Snc) by
definition.

The two cells X2 are introduced first at the basepoint τ∗. There are three
kinds of two cells.

The square two cells are defined by adding a two cell to each cycle of four
edges which are based at τ∗ and have the following properties. The four edges



The Teichmüller theory of the solenoid 45

are given by Whitehead moves equivariant with respect to the same finite index
subgroup K of G. We assume that e1, e2 ∈ τ∗ are two edges such that their
corresponding orbits K{e1} and K{e2} have no pairs (whose one element is
from K{e1} and the other is from K{e2}) of adjacent edges in τ∗. (Since we
take a K-equivariant Whitehead move for ei, we implicitly assume that orbit
K{ei} ⊂ τ∗ does not have adjacent edges in τ∗, for i = 1, 2.) Let f1, f2 be the
other diagonals in the two quadrilaterals in (D − τ∗) ∪ {e1}, (D − τ∗) ∪ {e2}
containing e1, e2. Then we form a TLC tesselation τ1 by performing a K-
equivariant Whitehead move on τ∗ along e1; we form a TLC tesselation τ2 by
performing a K-equivariant Whitehead move on τ1 along e2; we form a TLC
tesselation τ3 by performing a K-equivariant Whitehead move on τ2 along f1;
and we return to τ∗ by performing a K-equivariant Whitehead move on τ3

along f2. The corresponding edges E1 = (τ∗, τ1), E2 = (τ1, τ2), E3 = (τ2, τ3)
and E4 = (τ3, τ∗) make a closed path. We add a square two cell to X whose
boundary is the above closed edge path.

The pentagon two cells are defined by adding a two cell whose boundary is
a closed edge path of length five as follows. Let K be a finite index subgroup
of G and let e1, e2 be two adjacent edges in τ∗. Assume that e1 /∈ K{e2}.
Let P be the pentagon in (D − τ∗) ∪ {e1, e2}; the orbit of pentagons K{P}
has pairwise mutually disjoint interiors with possible identifications of their
boundaries. We define a closed edge path of length five by Whitehead moves:
E1 is given by a Whitehead move along K{e1} where K{e1} 7→ K{f1}; E2 is
given by a Whitehead move along K{e2} where K{e2} 7→ K{f2}; E3 is given
by a Whitehead move along K{f1} where K{f1} 7→ K{f3}; E4 is given by
a Whitehead move along K{f2} where K{f2} 7→ K{e1}; and E5 is given by
a Whitehead move along K{f3} where K{f3} 7→ K{e2} (this is the classical
pentagon relation on a surface lifted to D; see, for example, [34],[33],[36]). We
add a pentagon two cell whose boundary is such an edge path.

The coset two cells are defined by subdividing a single equivariant White-
head move into several equivariant Whitehead moves as follows. Let K be a
finite index subgroup of G and let K1 be a finite index subgroup of K. Let
e ∈ τ∗ be such that no two edges in the orbit K{e} are adjacent in τ∗. The
long edge E is given by K-equivariant Whitehead move along K{e}. The
short edges are given by K1-equivariant Whitehead moves as follows. Since
k := [K : K1] < ∞, there exists finitely many e1, e2, . . . , ek ∈ K{e} such
that ei /∈ K1{ej}, for i 6= j, and ∪k

i=1K1{ei} = K{e}. We define a sequence
of short edges E1, . . . Ek by Ei = (τi−1, τi), where τi, for i = 1, 2, . . . , k, is
obtained from τi−1 by performing a K1-equivariant Whitehead move on τi−1

along K1{ei} and τ0 = τ∗. The edge path E1, E2, . . . , Ek starts at τ∗ and ends
at the endpoint of E. Thus E1, . . . , Ek, E is a closed edge path based at τ∗
and we add a coset two cell whose boundary is the given path (see [6]).
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A general two cell in X is the image under Mod(Snc) of a two cell based
at τ∗. It turns out that an image of a square or a pentagon two cell based
at τ∗ under Mod(Snc) whose one vertex on its boundary is τ∗ is of the same
form as above. Namely, all the edges are Whitehead moves equivariant under
a subgroup of PSL2(Z), while an image of a coset two cell under Mod(Snc)
has generalized Whitehead moves as edges whenever the long edge does not
limit at τ∗. It may happen that two short edges limit at τ∗. The Modular
group Mod(Snc) preserves the set of two cells X2 by its definition (see [6]).

We showed that the triangulation complex is simply connected [6].

Theorem 11.6. The Modular group Mod(Snc) acts cellularly on the trian-
gulation complex X . The triangulation complex X is connected and simply
connected.

We gave [6] a presentation of the Modular group Mod(Snc) using its action
on X . We already showed that Mod(Snc) acts transitively on the vertices of
X and that the isotropy group of τ∗ is PSL2(Z). Therefore, each orbit of
an edge contains an edge with one endpoint at τ∗. To give a presentation,
it is necessary to find the isotropy groups of edges. There are two types of
edges with one endpoint in τ∗, the set E+ of edges which are not inverted by
the action of Mod(Snc) and the set of edges E− which are inverted by the
action of Mod(Snc). If E ∈ E+ is obtained by a K-equivariant Whitehead
move then the isotropy group of E has to be contained in PSL2(Z) and it
contains K. In fact, the isotropy group of E is a finite extension K ′ of K by
elliptic elements in PSL2(Z) which preserve the other vertex τ of the edge
E = (τ∗, τ). Let E1 = (τ∗, τ1) ∈ E− be an edge reversed by Mod(Snc), where
τ1 is obtained by a K1-equivariant Whitehead move and fixed by K ′

1 > K.
Then the isotropy group of E1 is generated by K ′

1 < PSL2(Z) which does
not reverse the orientation of E1 and by k ∈ Mod(Snc) which reverses the
orientation, where k is mapping class like (i.e. k conjugates a finite index
subgroup of G onto itself) and k2 ∈ K ′

1 − K1 is elliptic fixing an edge in τ∗
which implies k4 = id (see [6]).

We choose a single Whitehead move for each edge E = (τ∗, τ) starting at
τ∗ by taking e0 = (−1, 1) to be a DOE of τ∗ and defining a DOE of the other
vertex τ as above. The set of these Whitehead moves together with PSL2(Z)
generate Mod(Snc). We describe relations coming from two cells in X for the
chosen generating set.

Let Q be a square two cell based at τ∗ with edges Ei = (τi−1, τi), for
i = 1, . . . , 4, with τ0 = τ4 = τ∗ such that τi are K-equivariant. Let h1 ∈
Mod(Snc) be the Whitehead homeomorphism corresponding to E1, h2 the
Whitehead homeomorphism corresponding to the edge E′

2 = (τ∗, h−1
1 (τ∗)), h3
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the Whitehead homeomorphism corresponding to the edge E′
3 = (τ∗, (h1 ◦

h2)−1(τ∗)), and h4 the Whitehead homeomorphism corresponding to the edge
E′

4 = (τ∗, (h1 ◦ h2 ◦ h3)−1(τ∗)). If e0 /∈ K{e1, e2}, where K{e1} and K{e2}
are orbits which get changed in the definition of Q, then h1 ◦ · · · ◦ h4(e0) = e0

which implies that

h1 ◦ · · · ◦ h4 = id. (11.1)

If e0 ∈ K{e1, e2} then h1 ◦ · · · ◦ h4(e0) = ē0, where ē0 is the opposite
orientation of e0, which implies that

h1 ◦ · · · ◦ h4 = se0 , (11.2)

where se0 ∈ PSL2(Z) is an elliptic element reversing the orientation of e0.

Let P be a pentagon two cell based at τ∗ with boundary edge path Ei =
(τi−1, τi), for i = 1, . . . , 5, where τ0 = τ5 = τ∗ and τi are K-equivariant.
Let K{e1, e2} be the orbits which get changed to obtain P . Let hi be the
Whitehead move corresponding to (h1 ◦ · · · ◦ hi−1)−1(Ei) as defined above.
Then we have a pentagon relation

h1 ◦ · · · ◦ h5 = id, (11.3)

whenever e0 /∈ K{e1, e2}. We get

h1 ◦ · · · ◦ h5 = γe0,ē2 , (11.4)

when e0 ∈ K{e1}, where γe0,ē2 maps e0 onto ē2. Finally, we get

h1 ◦ · · · ◦ h5 = γe0,ē1 , (11.5)

when e0 ∈ K{e2}, where γe0,ē1 maps e0 onto ē1.

Let C be a coset two cell given by a long edge determined by Whitehead
move along K{e} and by short edges with respect to K1 < K, where k =
[K : K1] < ∞. We note that given K1, there are k! paths of short edges
connecting the two endpoints of the long edge. If e0 /∈ K{e} then we obtain a
coset relation

h ◦ h1 ◦ · · · ◦ hk = id, (11.6)

where h is the Whitehead homeomorphism corresponding to the long edge and
hi is the Whitehead homeomorphism corresponding to the image (h◦h1 ◦ · · · ◦
hi−1)−1(Ei) of the i-th short edge Ei. If e0 ∈ K{e} then we obtain coset
relation

h ◦ h1 ◦ · · · ◦ hk = se0 , (11.7)

where se0 ∈ PSL2(Z) reverses the orientation of e0.

We obtained [6] a presentation for Mod(Snc) as follows.
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Theorem 11.7. The modular group Mod(Snc) is generated by the isotropy
subgroup PSL2(Z) of the basepoint τ∗ ∈ X , the isotropy subgroups Γ(E) for
E ∈ E±, and by the Whitehead homeomorphism gE for E ∈ E+ chosen as
above. The following relations on these generators give a complete presentation
of Mod(Snc):
a) The inclusions of Γ(E) into PSL2(Z), for E ∈ E+, are given by Γ(E) = K ′,
where the terminal endpoint of E is invariant under the finite-index subgroup
K ′ < PSL2(Z);
b) The inclusions of Γ+(E) into PSL2(Z), for E ∈ E−, are given by Γ(E) =
K ′, where the terminal endpoint of E is invariant under the finite-index sub-
group K ′ < PSL2(Z);
c) The relations introduced by the boundary edge-paths of two-cells in F given
by the equations (11.3), (11.4), (11.5), (11.1), (11.2), (11.6) and (11.7);
d) The redundancy relations: for any two edges E and E′ in E± and for any
γ ∈ PSL2(Z) such that γ(E) = E′, we get the relation

gE′ ◦ γ′ = γ ◦ gE ,

where γ′ is the unique element of PSL2(Z) that satisfies γ′(e0) = e′1 with
e′1 = g−1

E′ (γ(e0)).

Remark 11.8. The redundancy relations d) in the above theorem are intro-
duced because we used more generators than necessary. We could have used
Whitehead homeomorphisms of representatives of orbits of edges based at τ∗
instead. Then we would not have to add relations d). However, it is not easy
to give a proper enumeration of such orbits which would necessarily compli-
cate the relations in c). Thus, for the sake of simplicity of relations, we used
a larger set of generators in the above theorem.

We also showed [6] that Mod(Snc) has no center.

Theorem 11.9. The modular group Mod(Snc) of the punctured solenoid Snc

has trivial center.

12 Elements of Mod(Snc) with small non-zero dilatations

In a recent joint work with V. Markovic [28], we showed the following

Theorem 12.1. For every ε > 0 there exist two finite index subgroups of
PSL2(Z) which are conjugated by a (1 + ε)-quasisymmetric homeomorphism
of the unit circle and this conjugation homeomorphism is not conformal.
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To construct the above groups and the quasisymmetric map, we use the
generators of the modular group Mod(Snc) introduced in [36] (see also the
proof of Theorem 11.3).

We obtained [28] the following corollary to the above theorem.

Corollary 12.2. Let T0 denote the Modular torus. Then for every ε > 0 there
are finite degree, regular coverings π1 : M1 → T0 and π2 : M2 → T0, and a
(1 + ε)-quasiconformal homeomorphism F : M1 → M2 that is not homotopic
to a conformal map.

The following corollary is an interpretation of Theorem 12.1 in terms of the
Teichmüller space T (Snc) of the non-compact solenoid Snc. This is a significant
progress in understanding the quotient T (Snc)/Mod(Snc).

Corollary 12.3. The closure in the Teichmüller metric of the orbit (under
the Modular group Mod(Snc)) of the basepoint in T (Snc) is strictly larger than
the orbit. Moreover, the closure of this orbit is uncountable.

13 Some open problems

We discuss some open question concerning the Teichmüller space T (SG) and
the Modular group Mod(SG) of the solenoid.

As we already mentioned, a conjecture by L. Ehrenpreis states that given
any two closed Riemann surfaces of genus at least two and given any ε > 0 there
exist unbranched, finite sheeted, holomorphic covers of these surfaces that are
(1 + ε)-quasiconformal. D. Sullivan gave the following equivalent formulation
in terms of the compact solenoid:

1. Is it true that the Modular group Mod(SG) has dense orbits in the Te-
ichmüller space T (SG) of the compact solenoid SG?

We also considered the Teichmüller space T (Snc) and the Modular group
Mod(Snc) of the noncompact solenoid Snc. Therefore we can ask the analogous
question in this setup:

2. Is it true that the Modular group Mod(Snc) has dense orbits in the Te-
ichmüller space T (Snc) of the noncompact solenoid Snc?

It is interesting to note that a positive answer to question 1 does not im-
mediately give a positive answer to question 2. This is easiest to understand
in terms of the original formulation by Ehrenpreis. To see this, assume for the
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moment that any two closed surfaces have unbranched, finite sheeted, holomor-
phic covers which are quasiconformal with arbitrary small dilatation. When
considering two punctured surfaces, one is tempted to fill in the punctures
and find unbranched holomorphic covers of the compactified surfaces which
are quasiconformal with small dilatation. However, the problem is that the
quasiconformal map does not necessarily send the lifts of the punctures on one
surface to the lifts of the punctures on the other surface.

We considered the Teichmüller metric on T (SG) and the existence of geodesics
between points. If a map is of Teichmüller-type then we showed that it is ex-
tremal and that there is a unique geodesic between the point determined by
the Teichmüller-type map and the base point of T (SG). Moreover, we showed
that only a small subset of T (SG) has Teichmüller-type representative. We
ask

3. Is it true that any point in the Teichmüller space T (SG) has an (unique)
extremal representative?

If the answer is positive, then any two points are connected by a (unique)
geodesic. Even if the answer is negative, it is still possible to have geodesics
connecting a point in T (SG) without an extremal representative to the base
point.

4. Is it possible to connect any two points in T (SG) by a (unique) geodesic?

We also established a sufficient condition for a point in T (SG) to have
a Teichmüller-type representative. The condition is given in terms of the
approximating sequence of TLC structures. We ask for additional sufficient
conditions.

5. Is there a sufficient condition for a point [f ] ∈ T (SG) expressed only in
terms of the geometry of the point [f ] to have a Teichmüller-type representa-
tive?

A classical statement about duality of the cotangent and tangent space for
Teichmüller spaces of Riemann surfaces is false for T (SG). We therefore ask

6. Does the tangent space L∞s (SG)/N(SG) at the basepoint of T (SG) have a
pre-dual?

It is a classical fact that any biholomorphic map of the Teichmüller space
of a finite Riemann surface is given by the geometric action of an element
of the extended mapping class group. This is recently proved for all infinite
Riemann surfaces as well [26] (see also [16], [40], [11], [10], [22]). We ask
analogous question of T (SG).
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7. Does every biholomorphism (isometry) of T (SG) arise by the geometric
action of the full mapping class group Modfull(SG) (i.e. homotopy classes of
self maps of SG not necessarily fixing the baseleaf and allowing orientation
reversing elements)?

We considered the Modular group Mod(Snc) of the noncompact solenoid
Snc and found an explicit set of generators and a presentation. We ask the
analogous question for the compact solenoid.

8. Find an explicit set of generators of Mod(SG) of the compact solenoid SG.

9. Find a presentation of Mod(SG).

We expect that these modular groups are infinitely generated.

10. Show that Mod(SG) and Mod(Snc) are infinitely generated.

Recall that an element of Mod(SG) is called a mapping class like if it is
a lift of a self map of a closed surface. C. Odden [37] asked the following
question:

11. Is it true that Mod(SG) and Mod(Snc) are generated by mapping class like
elements?

Study properties of Mod(SG). In particular,

12. Is there a classification of the elements of Mod(SG) according to their
actions on SG similar to the Thurston’s classification of the mapping class
group elements of a closed surface?
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[28] V. Markovic and D. Šarić, The Teichmüller distance between finite index sub-
groups of PSL2(Z), submitted for publication, available at arXiv:0707.0308.
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221.
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