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THE TEICHMÜLLER DISTANCE BETWEEN FINITE INDEX

SUBGROUPS OF PSL2(Z)

VLADIMIR MARKOVIC AND DRAGOMIR ŠARIĆ

Abstract. For a given ǫ > 0, we show that there exist two finite index sub-
groups of PSL2(Z) which are (1 + ǫ)-quasisymmetrically conjugated and the
conjugation homeomorphism is not conformal. This implies that for any ǫ > 0
there are two finite regular covers of the Modular once punctured torus T0 (or
just the Modular torus) and a (1 + ǫ)-quasiconformal between them that is
not homotopic to a conformal map. As an application of the above results,
we show that the orbit of the basepoint in the Teichmüller space T (Sp) of the
punctured solenoid Sp under the action of the corresponding Modular group
(which is the mapping class group of Sp [5], [6]) has the closure in T (Sp)
strictly larger than the orbit and that the closure is necessarily uncountable.

1. Introduction

Let F be a quasiconformal map between two Riemann surfaces. By

µ(F ) =
∂̄F

∂F
,

we denote the Beltrami dilatation (or just the dilatation) of F . The function

K(F ) =
1 + |µ|

1 − |µ|
,

is called the distortion function of F . If K ≥ 1 is such that 1 ≤ K(F ) ≤ K a.e. we
say that F is K-quasiconformal. If F is homeomorphism of the unit disc onto itself
that is 1-quasiconformal then F is a Möbius transformations.

Let f : S1 → S1 be a homeomorphism of the unit circle onto itself. We say that
f is a K-quasisymmetric map if there exists a K-quasiconformal map F : D → D

of the unit disc onto itself so that the continuous extension of F on S1 agrees
with f (recall that every quasiconformal maps of the unit disc onto itself extends
continuously to a homeomorphism of the unit circle). If f is homeomorphism of
the unit circle onto itself that is 1-quasisymmetric then f is conformal, that is f is
a Möbius transformations.

The first main result in this paper is
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Theorem 1. For every ǫ > 0 there exist two finite index subgroups of PSL2(Z)
which are conjugated by a (1+ ǫ)-quasisymmetric homeomorphism of the unit circle
and this conjugation homeomorphism is not conformal.

Unless stated otherwise by a Riemann surface we always mean a Riemann surface
of finite type. Every such Riemann surface is obtained by deleting at most finitely
many points from a closed Riemann surface. If M and N are Riemann surfaces we
say that a map π : N → M is a finite degree, regular covering if π is holomorphic,
of finite degree and locally univalent (we also say that N is a cover of M). (Some
people prefer the term unbranched covering instead of regular covering.) Unless
stated otherwise all coverings are assumed to be regular and of finite degree. Note
that if M and N have punctures then the regularity assumption does not imply
that π is locally univalent in a neighborhood of a puncture (which is only natural
since the punctures are not part of the corresponding surface).

Given two Riemann surfaces M and N the Ehrenpreiss conjecture asks if for
every ǫ > 0 there are coverings Mǫ → M and Nǫ → N such that there exists a
(1 + ǫ)-quasiconformal map F : Mǫ → Nǫ. In this case we say that Mǫ and Nǫ are
ǫ-close. It is easy to see that this conjecture is true if M and N are tori.

Recall that the notion of quasiconformal ǫ-closeness between hyperbolic Riemann
surfaces is in fact a geometric property . After endowing the Riemann surfaces M
and N with the corresponding hyperbolic metrics it is well known that a (1 + ǫ)-
quasiconformal map F : Mǫ → Nǫ is isotopic to a (1 + δ)-biLipschitz homeomor-
phism such that δ → 0 when ǫ → 0 (the function δ = δ(ǫ) does not depend on the
choice of surfaces M and N). One such biLipschitz map is obtained by taking the
barycentric extension [1] of the boundary map of the lift to the universal covering
of f : Mǫ → Nǫ (this observation was made in [2]).

There are no known examples of hyperbolic Riemann surfaces M and N , such
that for every ǫ > 0 there are coverings Mǫ → M and Nǫ → N which are ǫ-close,
unless M and N are commensurate. We say that M and N are commensurate if
they have a common cover (recall that we assume throughout the paper that all
coverings are regular). If M and N are commensurate one can say that M and N
have coverings that are 0-close.

It is not difficult to see (see the last section for the proof) that if the Ehrenpreiss
conjecture had a positive answer then for any Riemann surface M and for any
ǫ > 0, there would exist two coverings M1, M2 → M and a (1 + ǫ)-quasiconformal
homeomorphism F : M1 → M2 that is not homotopic to a conformal map. In
general, for a given Riemann surface M the problem of constructing two such
covers M1 and M2 and the corresponding (1 + ǫ)-quasiconformal map F (where F
is not homotopic to a conformal map) seems to have a similar degree of difficulty
as the Ehrenpreiss conjecture.

Problem. Let M be a hyperbolic Riemann surface. Is it true that for every ǫ > 0
there exist two coverings M1, M2 → M and a (1 + ǫ)-quasiconformal homeomor-
phism F : M1 → M2 that is not homotopic to a conformal map?
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If such covering surfaces M1 and M2 exist they may be conformally equivalent.
In that case the homeomorphism F is not allowed to be homotopic to any such
conformal equivalence. If M1 and M2 are not conformally equivalent then we could
say that the coverings M1 and M2 are ǫ-close but not 0-close.

In this paper we show that this problem has a positive answer for the Modular
torus (and any other Riemann surface commensurate with it).

Corollary 1. Let T0 denote the Modular torus. Then for every ǫ > 0 there are
finite degree, regular coverings π1 : M1 → T0 and π2 : M2 → T0, and a (1 + ǫ)-
quasiconformal homeomorphism F : M1 → M2 that is not homotopic to a conformal
map.

Proof. This follows directly from Theorem 1. Assume that G1, G2 < PSL2(Z) are
two finite index subgroups that are conjugated by (1 + ǫ)-quasisymmetric map of
the unit circle that is not conformal. Let Mi, i = 1, 2, be the Riemann surface
that is conformally equivalent to the quotient D/Gi. Then M1 and M2 satisfy the
assumptions in the statement of this corollary. �

Consider the coverings π1 : M1 → T0 and π2 : M2 → T0, where the surfaces M1

and M2 are from Corollary 1. Then for ǫ small enough the (1 + ǫ)-quasiconformal
map F : M1 → M2 can not be a lift of a self homeomorphism of T0. That is, there
is no homeomorphism F̂ : T0 → T0 so that F̂ ◦ π1 = π2 ◦ F . The non-existence

of such a map F̂ follows from the discreteness of the action of the Modular group
on the Teichmüller space of the surface T0. This illustrates what is difficult about
proving Corollary 1. An important ingredient in the proof of Theorem 1. is the
fact that PSL2(Z) is an arithmetic lattice. At the moment we can not prove this
result for other punctured surfaces (or for any closed surface, not even those whose
covering groups are arithmetic). However, already from Corollary 1. one can make
strong conclusions about the Teichmüller space of the punctured solenoid.

Remark. In [3] Long and Reid defined the notion of pseudo-modular surfaces and
have shown their existence. As an important special case, it would be interesting to
examine whether one can prove the above corollary for a pseudo-modular surface
instead of the Modular torus.

Recall that the inverse limit S of the family of all pointed regular finite covers
of a closed hyperbolic Riemann surface is called the Universal hyperbolic solenoid
(see [9]). It is well known that the commensurator group of the fundamental group
of a closed Riemann surface acts naturally on the Teichmüller space T (S) of the
solenoid S [5]. Sullivan has observed that the Ehrenpreiss conjecture is equivalent
to the question whether the orbits of this action are dense in T (S) with respect to
the corresponding Teichmüller metric.

In [9] mainly closed Riemann surface have been considered (as a model how such
holomorphic inverse limits should be constructed). We consider the family of all
pointed coverings of some fixed once punctured torus T . The punctured solenoid Sp

is the inverse limit of the above family [8]. The covers of the punctured torus T are
regular, but as we already pointed out, the coverings can be naturally extended to
the punctures in the boundary and are allowed to be branched over those boundary
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punctures. The punctured solenoid Sp is an analog, in the presence of the punctures,
of the universal hyperbolic solenoid S. The (peripheral preserving) commensurator
group Commper(π1(T )) of the fundamental group π1(T ) of T acts naturally on the
Teichmüller space T (Sp) of the punctured solenoid Sp. We consider the orbit space
T (Sp)/Commper(π1(T )).

The corollary below is a significant improvement from [4] of our understanding of
T (Sp)/Commper(π1(T )). Namely, we showed in [4] that T (Sp)/Commper(π1(T )) is
non-Hausdorff by showing that orbits under PSL2(Z) of marked hyperbolic metrics
on Sp which are not lifts of hyperbolic metrics on finite surfaces have accumulation
points in T (Sp). In this paper we start with the basepoint in T (Sp), i.e. a marked
hyperbolic metric from the Modular torus, and find an explicit sequence of elements
in Commper(π1(T )) such that the image of the basepoint under these elements
accumulates onto itself. Moreover, we establish that the orbit of the basepoint has
closure strictly larger that the orbit itself.

Corollary 2. The closure in the Teichmüller metric of the orbit (under the base
leaf preserving mapping class group Commper(π1(T ))) of the basepoint in T (Sp) is
strictly larger than the orbit. Moreover, the closure of this orbit is uncountable.

The above Corollary is proved using the Baire category theorem and Theorem
3.3 (see Section 3). However, we are also able to find an explicit sequence in
Commper(π1(T )) whose limit point in T (Sp) is not an element of Commper(π1(T ))
(see Corollary 4.2 in Section 4).

2. The Farey tessellation

We define the Farey tessellation F of the unit disk D as follows (see Figure 1).
Let ∆0 be the ideal triangle in D with vertices −1, 1 and i. We invert ∆0 by
applying the three hyperbolic involutions, each of the three preserves setwise one
boundary side of ∆0 (but it changes the orientation on the corresponding geodesic).
By this, we obtain three more ideal triangles each sharing one boundary side with
∆0. We continue the inversions with respect to the new triangles indefinitely. As a
result, we obtain a locally finite ideal triangulation of D called the Farey tessellation
F . The set of the vertices in S1 of the ideal triangles from F is denoted by Q̄. A
hyperbolic geodesic that is a side of a triangle from F is also called an edge in F .
Denote by l0 the edge with the endpoints −1 and 1, and fix an orientation on l0
such that −1 is the initial point and 1 is the terminal point. We call this edge the
distinguished oriented edge of F . Also, denote by l1 the oriented edge of F with
the endpoints 1 and i (and in that order).

Let f : S1 → S1 be a homeomorphism. Then f(F) is a well defined ideal
triangulation of D. We say that F is invariant under f if f(F) = F as the ideal
triangulations. The Farey tessellation F is invariant under the action of the group
PSL2(Z). If a homeomorphism of S1 preserves F , then it is necessarily in PSL2(Z).
This easy but important observation was proved in [8].

Consider two arbitrary locally finite ideal triangulations F1 and F2 of D. Fix
two oriented edges e1 and e2 from F1 and F2, respectively. Then e1 and e2 are
called the distinguished oriented edges of tessellations F1 and F2, respectively.
There exists a unique homeomorphism h : S1 → S1 which maps F1 onto F2 such
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Figure 1.

that e1 is mapped onto e2 in the orientation preserving manner [7]. We call such f
the characteristic map of F1 and F2. (The characteristic maps between the Farey
tessellation and an arbitrary tessellation of D were used in [7] to study the space
of homeomorphisms of S1. In this paper, we use the notion of a characteristic map
in a slightly broader sense that its domain is not only the Farey tessellation, but
we allow an arbitrary tessellation.)

We recall the construction of Whitehead homeomorphisms of S1 (the construc-
tion below has been developed in [8]). Throughout this paper G0 < PSL2(Z)
denotes the finite index subgroup such that D/G0 is the Modular torus T0. An
ideal triangulation of D is said to be an invariant tessellation if it is invariant
under the action of a finite index subgroup K < G0. Equivalently, an invariant tes-
sellation is an ideal triangulation of D that is the lift of a finite, ideal triangulation
of some finite Riemann surface that covers T0. In particular, the Farey tessellation
is an invariant tessellation.

We use the following result:

Theorem 2.1. ([8]) Let F1 and F2 be two invariant tessellations with the distin-
guished oriented edges e1 and e2, respectively. The characteristic map of F1 onto
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F2 which sends the distinguished oriented edge e1 onto the distinguished oriented
edge e2 conjugates a finite index subgroup of G0 onto another (possibly different)
finite index subgroup of G0.

Let F1 be an invariant tessellation (with the distinguished oriented edge e1) that
is invariant under the action of a finite index subgroup K < G0 and let e be an
edge of F1. Let K1 < K be a finite index subgroup. For the simplicity of the
exposition, we assume that the distinguished oriented edge e0 does not belong to
the orbit K1{e} of the edge e of F1.

Definition 2.2. A Whitehead move on F1 along the orbit K1{e} is the operation
of replacing the orbit of edges K1{e} by the new orbit of edges K1{f}, where f is
other diagonal of the ideal quadrilateral in (D \ F1) ∪ {e} (see Figure 2). As the
result of this operation we obtain a new ideal triangulation of the unit disc D that
is in fact an invariant tessellation. This new tessellation is denoted by F1

K1,e, it is
invariant under the action of the group K1 and its distinguished oriented edge is
e0.

Consider the homeomorphisms h of S1 which fixes e0 and which maps F1 onto
F1

K1,e. By Theorem 2.1, h conjugates a finite index subgroup of G0 onto another
finite index subgroup of G0.

Definition 2.3. ([8]) The Whitehead homeomorphism corresponding to the White-
head move along the orbit K1{e} is the characteristic map h : S1 → S1 of F1 and
F1

K1,e that fixes the common distinguished oriented edge e0 of F1 and F1
K1,e. It

follows directly that the Whitehead homeomorphism h depends only on F1 and
F1

K1,e, and we already noted that it conjugates a finite index subgroup of G0 onto

another (possibly different) finite index subgroup of G0.
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3. Mapping Classes with Small Dilatations

The following lemma is the first step in finding quasiconformal maps of D which
conjugate two finite index subgroups of PSL2(Z) that are not conformally con-
jugated to each other. We first show that the barycentric extensions [1] of the
Whitehead homeomorphisms (which we have defined in the previous section) have
dilatations essentially supported in a neighborhood of the diagonal exchange for
the corresponding Whitehead move.

We will use the following notation below.
Definition 3.1. Let F : D → D be a quasiconformal map and let N ∈ N. Then

V (F, N) := {z ∈ D : |µ(F )(z)| ≥
1

N
}.

Let f be a homeomorphism of the circle. By E(f) : D → D we always denote
the barycentric extension of f (see [1]).

Recall that F is the Farey tessellation with the distinguished oriented edge l0
(which is an oriented geodesic with endpoints −1 and 1). We keep the notation l1
for the edge of F whose endpoints are 1 and i. Let A ∈ PSL2(Q) be a hyperbolic
translation with the oriented axis l0. Let FA denote the image A(F) of the Farey
tessellation F under A. Then FA is invariant under the group AG0A

−1. Define
GA := G0 ∩ AG0A

−1. Since A is in the commensurator of PSL2(Z) and since
intersections of finitely many finite index subgroups of PSL2(Z) is a finite index
subgroup of PSL2(Z), we conclude that the group GA is a subgroup of finite index
in PSL2(Z). It follows that FA is an invariant tessellation of D which is invariant
under the finite index subgroup GA < G0 (note that the relation GA < G0 follows
from the definition of GA).

Lemma 3.2. Let FA be an invariant tessellation of D which is the image of the
Farey tessellation F under a hyperbolic translation A ∈ PLS2(Q) with the oriented
axis l0. Let FA

G,A(l1)
be the image of FA under the Whitehead move along the orbit

G{A(l1)}, where G < GA is any subgroup of finite index. Let fA be the Whitehead
homeomorphism which maps FA

G,A(l1)
onto FA fixing the common distinguished

oriented edge l0 and let E(fA) be its barycentric extension. Then, for each N ∈ N

there exists KN = KN(z0,F
A) > 0 such that V (E(fA), N) is a subset of the KN -

neighborhood of the orbit G{z0}, where z0 ∈ l0 is an arbitrary point. The constant
KN is independent of G.

Remark. According to the definition of the Whitehead homeomorphisms, the char-
acteristic map between FA and FA

G,A(l1)
is the Whitehead homeomorphism, and fA

is its inverse. However, the Whitehead move on FA
G,A(l1)

along the orbit G{A(l′1)}

gives FA, where l′1 is the other diagonal of the ideal quadrilateral in (D \F)∪{l1}.
Therefore, fA is also a Whitehead homeomorphism corresponding to this “inverse”
Whitehead move. Although the notation fA does not suggest that the map fA

depends on the group G < GA, it is important to remember that it does. It will
always be clear from the context what is the corresponding group G.
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Remark. The above lemma includes the possibility that A = id. In this case the
barycentric extension of the Whitehead homeomorphism fid between FG,l1 and the
Farey tessellation F is supported on the G orbit of a neighborhood of z0 ∈ l0.

Remark. The inverse E(fA)−1 of the barycentric extension of the Whitehead
homeomorphism fA which maps FA onto FA

G,A(l1)
has Beltrami dilatation “es-

sentially” supported in K ′
N = K ′

N(KN )-neighborhood of E(fA)(G{z0}). If A = id
then E(fid)(G{z0}) = H{E(fid)(z0)}, where H < PSL2(Z) is conjugated to G by
fid (see Theorem 2.1 and its proof in [8]).

Proof. Fix N ∈ N. The proof is by contradiction. That is we assume that there
exists a sequence of subgroups Gn < GA of finite index (every element in every
group Gn necessarily preserves FA) and a sequence of points wn ∈ D such that

dist(wn, Gn{z0}) → ∞

and

|µ(E(fn))(wn)| ≥
1

N
,

where fn is the Whitehead homeomorphism which maps FA
Gn,A(l1)

onto FA fixing

the common distinguished oriented edge l0.

Let Z0 := GA{z0} be the full orbit of z0 under GA. After passing onto a
subsequence if necessary, there are two cases that we have to consider:

(1) There exists C > 0 so that dist(wn,Z0) ≤ C for all n ∈ N.
(2) We have that dist(wn,Z0) → ∞ as n → ∞.

We denote by FA
n := FA

Gn,A(l1)
the image of the invariant tessellation FA under

the Whitehead move along the orbit Gn{A(l1)} of A(l1).

We first settle the first case, that is we assume that dist(wn,Z0) ≤ C for all
n. Since l1 is within the bounded distance from z0 it follows that wn is within the
bounded distance from GA{l1}. From the assumptions that dist(wn, Gn{z0}) → ∞
as n → ∞, and that dist(wn,Z0) ≤ C for all n, we get that dist(wn, Gn{l1}) → ∞
as n → ∞.

Recall that fn is the Whitehead homeomorphism which maps FA
n onto FA and

which fixes the common distinguished oriented edge l0. The barycentric extension
of fn is denoted by E(fn).

Choose γn ∈ GA such that dist(wn, γn(z0)) ≤ C for all n ∈ N. Since FA is
invariant under GA, there exists a fundamental polygon for GA which is a union
of finitely many adjacent triangles from FA. Moreover, we can choose such a
fundamental polygon ω with the following properties

(1) The boundary of ω contains the distinguished oriented edge l0.
(2) The polygon ω is to the left of l0.
(3) We have l1 ⊂ ω◦, where ω◦ is the interior of ω.

The union of translates of ω under the group GA tiles the unit disk D.

It is important to note that the tessellations FA and FA
n agree on the orbit

(GA \ Gn){ω} of the fundamental polygon ω (they differ inside the orbit Gn{ω}).
Let αn ∈ GA be such so that wn ∈ αn(ω). Also, let Tn ⊂ αn(ω) be a triangle in
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FA
n which contains wn. Then the triangles α−1

n (Tn) are contained in ω for each n.
After passing onto a subsequence if necessary we may assume that α−1

n (Tn) is the
same triangle T in ω for each n.

Since dist(wn, Gn{l1}) → ∞ as n → ∞ and dist(wn, GA{z0}) ≤ C for all n, we
conclude that the tessellations α−1

n (FA
n ) and FA agree on the edges intersecting a

hyperbolic disk with the center z0 and the hyperbolic radius rn, where rn → ∞ as
n → ∞. In particular, the triangle T is in FA. We already know that the triangle
T ′

n = fn(Tn) is in FA because fn maps FA
n onto FA. Therefore, there exists a

unique βn ∈ A ◦ PSL2(Z) ◦ A−1 such that βn(T ′
n) = T and such that βn ◦ fn ◦ αn

fixes each vertex of T (the fact that PSL2(Z) is transitive on the oriented edges of
the Farey tessellation F implies that A◦PSL2(Z)◦A−1 is transitive on the oriented
edges of the invariant tessellation FA which implies the existence of such βn).

The circle homeomorphism βn ◦ fn ◦ αn maps α−1
n (FA

n ) onto βn(FA) = FA. Its
barycentric extension is βn ◦ E(fn) ◦ αn (the barycentric extension is conformally
natural, see [1]). As we have already shown, given any neighborhood of the origin
in the unit disc, we can find n ∈ N, so that the tessellations α−1

n (FA
n ) and FA

agree on that neighborhood. Since βn ◦ fn ◦ αn fixes every vertex of the triangle
T it follows that βn ◦ fn ◦ αn → id on the circle as n → ∞. This implies that
the Beltrami dilatation µ(βn ◦E(fn) ◦αn) converges to zero uniformly on compact
subsets of D. Since wn is on the bounded distance from Z0 it follows that α−1

n (wn)
is in a compact subset of D. This implies that

(1) |µ(βn ◦ E(fn) ◦ αn)(α−1
n (wn))| → 0

as n → ∞. Since |µ(βn ◦ E(fn) ◦ αn)| = |µ(E(fn)) ◦ αn|, we derive a contradiction
to the assumption that |µ(E(fn))(wn)| ≥ 1

N
for all n ∈ N.

It remains to consider the case when dist(wn,Z0) → ∞ as n → ∞. We keep the
notation fn for the Whitehead homeomorphism which maps FA

n := FA
Gn,A(l1)

onto

FA and which fixes l0.

Remark. Note that the condition dist(wn,Z0) → ∞, as n → ∞, means that
the projection of the sequence wn onto the surfaces obtained as the quotient of
the unit disc by finite index subgroups Gn of G0 converges to the punctures in
the boundary of that surfaces. The fact (that we prove in detail below) that the
Beltrami dilatation of E(fn) tends to zero along the sequence wn is actually a
corollary of the fact that the circle homeomorphism fn is differentiable at every
“rational” point on the circle (these are the fixed points of parabolic transformations
from G0).

We fix a fundamental polygon ω for GA as above. That is, ω is the union of
adjacent triangles in FA such that

(1) l0 is on the boundary of the fundamental polygon ω
(2) ω is to the left of l0
(3) l1 ⊂ ω◦, where ω◦ is the interior of ω

Let Tn be a triangle from FA
n which contains wn and let T ′

n = fn(Tn) be the image
triangle in FA as before. Let αn ∈ GA be such that Tn ⊂ αn(ω) and let βn ∈ GA
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be such that βn(T ′
n) ⊂ ω. After passing onto a subsequences if necessary, we can

assume that α−1
n (Tn) and βn(T ′

n) are fixed triangles T and T ′ in ω, respectively.
We note that T ′ is a triangle in FA. On the other hand, T is in α−1

n (FA
n ) for each

n, which implies that that T is either in FA (if αn ∈ GA \ Gn or if αn ∈ Gn and
Tn ⊂ FA \ FA

n ) or in FA
n (if αn ∈ Gn and Tn ⊂ FA

n \ FA).

The map f̃n := βn ◦ fn ◦α−1
n maps T onto T ′. After passing onto a subsequence

if necessary, the points α−1
n (wn) ∈ T converge to a single ideal vertex y of T .

Let y′ := f̃n(y) ∈ T ′ which is a fixed point for all n after possibly passing onto a
subsequence if necessary. Let l be a boundary side of T with y its ideal endpoint such
that l ∈ FA (at least one of the two boundary sides of T with y their ideal endpoint
is in FA because the tessellation α−1

n (FA
n ) is obtained by a Whitehead move on

FA along the orbit α−1
n Gn{A(l1)} which implies that no two adjacent geodesics

can be changed by the definition of a Whitehead move). Let l′ = f̃n(l) ∈ FA be

a boundary side of T ′ with an ideal endpoint y′ (since f̃n(T ) is a fixed triangle T ′

for each n, then after passing onto a subsequence if necessary the side f̃n(l) is the
same boundary side l′ of T ′).

Let γ ∈ GA be a primitive parabolic element which fixes y and let γ′ ∈ GA be
a primitive parabolic element in GA which fixes y′. Then the set of edges in FA

with one ideal endpoint y is invariant under the action of γ and a fundamental set
for the action of a cyclic group < γ > generated by γ consists of finitely many
adjacent geodesics of FA with one endpoint y. Similarly, the set of edges in FA

with one ideal endpoint y′ is invariant under the action of γ′ and a fundamental
set for the action of < γ′ > consists of finitely many adjacent geodesics of FA with
one endpoint y′.

The group Gn is a finite index subgroup of GA and it follows that α−1
n Gnαn

is also a finite index subgroup of GA. Therefore, the isotropy subgroup of y in
α−1

n Gnαn is of finite index in the isotropy group < γ > of y in GA. Thus a
generator γn ∈ α−1

n Gnαn of the isotropy group of y is equal to a finite, non-zero,
integer power of γ. After possibly replacing γn by its inverse if necessary, we have
γn = γpn , for some pn ∈ N. A fundamental set for the action of < γn > on the
geodesics of FA with one endpoint y is obtained by taking pn translates by γ of a
fixed fundamental set for < γ >.

Note that the tessellation α−1
n (FA

n ) is obtained by a Whitehead move on FA

along the orbit α−1
n Gnαn{A(l1)}. Let ky be the number of geodesics in a fun-

damental set for the action of < γ > on the set of edges of FA which have one
endpoint y. If l is a fixed edge of FA with one endpoint y then ky is the number of
edges in FA with one endpoint y which lie in between l and γ(l), where we count l
but do not count γ(l). Let ky′ be the number of geodesics in a fundamental set for
the action of < γ′ > on the edges of FA with one endpoint y′. Equivalently, ky′ is
the number of geodesics in FA with one ideal endpoint y′ in between l′ and γ′(l′)
counting l′ but not counting γ′(l′), where l′ is a fixed edge of FA with one endpoint
y′. The number of geodesics in a fundamental set for the action of < γ′

n > on the
set of edges of FA with one endpoint y is kypn.
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Recall that α−1
n (FA

n ) is obtained by a Whitehead move on FA along the orbit
α−1

n Gnαn{A(l1)}. The Whitehead move can either add edges at y, erase edges at
y, or do not change edges at y. We further assume that the choice of the edge l in
FA with one endpoint y is such that the Whitehead move does not erase l. The
number of geodesics in α−1

n (FA
n ) with an ideal endpoint at y in between l and γn(l)

(including l but not including γn(l)) is kypn + a, where a = 0 if the Whitehead
move does not change any edge at y, a = 1 if the Whitehead move adds edges at
y or a = −1 if the Whitehead move erases edges at y. (In the top part of Figure
3, we illustrate the case when the Whitehead move adds geodesics at y; ky = 3;
ky′ = 2.)

Let M : D → H be a Möbius map which sends y to ∞, l to a geodesic with
endpoints 0 and ∞, and γ(l) to a geodesic with endpoints 1 and ∞. Let N : D → H

be a Möbius map which sends y′ to ∞, l′ to a geodesic with endpoints 0 and ∞,

and γ′(l′) to a geodesic with endpoints 1 and ∞. Define f̂n := N ◦ f̃n ◦ M−1. Let
w′

n := M(α−1
n (wn)) ∈ H (see Figure 3). Then wn → ∞ as n → ∞ inside the

triangle M(T ). Namely, bn := Im(w′
n) → ∞ as n → ∞ and 0 ≤ Re(w′

n) < 1 for all
n ∈ N. This implies that 1

bn
w′

n stays in a compact subset of H.

We consider the pointwise limit of 1
bn

f̂n(bnx) as n → ∞ for all x ∈ R. Our goal

is to show that it is a linear map. There are two possibilities (after passing onto a
subsequence if necessary)

(1) pn → ∞ as n → ∞
(2) pn = p is fixed, for all n ∈ N
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We assume that pn → ∞ as n → ∞. We obtain an upper bound

(2) f̂n(bnx) < f̂n([bnx] + 1) ≤ ([bnx] + 1)ky

1

ky′

+
( [bnx] + 1

pn

+ 1
) 1

ky′

+ 2,

where [bnx] is the integer part of bnx. The first inequality in (2) follows because

bnx < [bnx] + 1 and f̂n is an increasing function. The second inequality in (2) is
obtained as follows. By the choice of M and N above, we have (M ◦ γ ◦M−1)(z) =
z + 1, (M ◦ γn ◦M−1)(z) = z + pn and (N ◦ γ′ ◦N−1)(z) = z + 1 (see Figure 3). In

between 0 and [bnx]+1 there is [ [bnx]+1
pn

] of adjacent intervals of length pn. For each

interval of length pn, the number of geodesics in M(α−1
n (FA

n )) with one endpoint ∞
and the other endpoint in the interval is at most the number of geodesics in M(FA)
with one endpoint ∞ and the other point in the interval plus one extra geodesic
(because the Whitehead move adds at most one geodesic in such an interval). The

map f̂n fixes 0 and ∞, and it maps the geodesics of M(α−1
n (FA

n )) onto the geodesics
of N(FA). Therefore, we need to estimate the number of geodesics in M(α−1

n (FA
n ))

with one endpoint ∞ and the other endpoint in the interval [0, [bnx]+1]. The second
inequality in (2) is obtained by noting that ([bnx]+1)ky is the number of geodesics
in M(FA) with one endpoint ∞ and the other point in the interval [0, [bnx] + 1]

and that we add at most [bnx]+1
pn

+1 geodesics to get the corresponding geodesics of

M(α−1
n (FA

n )). We need to divide the number of geodesics by ky′ because N(FA)
has ky′ geodesics with one endpoint ∞ and the other endpoint in a fixed interval

of length 1. Since the quantities ([bnx] + 1)ky and [bnx]+1
pn

+ 1 are not necessarily

divisible with ky′ , we add 2 to ensure that we have an upper bound in (2).

In a similar fashion, we obtain a lower bound

(3) f̂n(bnx) ≥ f̂n([bnx]) ≥ [bnx]ky

1

ky′

−
( [bnx]

pn

+ 1
) 1

ky′

− 2.

Since pn → ∞ and [bnx]
bn

→ x as n → ∞, the inequalities (2) and (3) imply that

1

bn

f̂n(bnx) →
ky

ky′

x,

as n → ∞. Thus 1
bn

f̂n(bnx) converges pointwise to a linear map in the case when
pn → ∞ as n → ∞.

We assume that pn = p for all n ∈ N. Then we obtain the following upper bound

(4) f̂n(bnx) < f̂n([bnx] + 1) ≤
[ [bnx] + 1

p

]
(kyp + a)

1

ky′

+ kyp
1

ky′

.

The second inequality in (4) is obtained by noting that there is
[

[bnx]+1
p

]
adjacent

disjoint intervals of length p from 0 to [bnx] + 1 each of which contains endpoints
of kyp + a geodesics of M(α−1

n (FA
n )) with the other endpoint at ∞. Since each

interval of length 1 contains ky′ endpoints of geodesics of N(FA) with the other
endpoint ∞, we obtain the first summand on the right of (4). We add kyp 1

ky′

to the

right of (4) because [bnx]+1
p

might not be an integer and, in this case, the interval
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[[ [bnx]+1
p

]p, [bnx] + 1] is of the length strictly smaller than p. Our upper estimate of

this part uses an interval of length p.

The following lower bound

(5) f̂n(bnx) ≥ f̂n([bnx]) ≥
[ [bnx]

p

]
(kyp + a)

1

ky′

is obtained similarly to the above upper bound.

The inequalities (4) and (5) together with the facts that [ [bnx]+1
p

]/bn → 1
p
x and

[ [bnx]
p

]/bn → 1
p
x as n → ∞ imply that

1

bn

f̂n(bnx) → (
ky

ky′

+
a

pky′

)x

as n → ∞. Thus 1
bn

f̂n(bnx) converges to a linear map in the case pn = p as well.

We showed above that 1
bn

f̂n(bnx) converges pointwise to a linear map in both

cases which implies that |µ(E(B−1
n ◦ f̂n ◦Bn))| → 0 uniformly on compact subsets,

where Bn(z) := bnz. Since 1
bn

w′
n stays in a compact subset of H, we get (by

the conformal naturality of the barycentric extension [1]) that |µ(E(B−1
n ◦ f̂n ◦

Bn))( 1
bn

w′
n)| = |µ(E(f̂n))(w′

n)| → 0 as n → ∞. But this is in contradiction with

the starting assumption that |µ(E(fn))(wn)| ≥ 1
N

which proves the lemma. ✷

Recall that A ∈ PSL2(Q) is a hyperbolic translation with the oriented axis l0
and that GA = AG0A

−1 ∩G0. Then GA is a finite index subgroup of G0. We keep
the notation F for the Farey tessellation and the notation FA for the image of F
under A. Then FA is a tessellation of D invariant under GA.

If G is a finite index subgroup of G0, recall that FG,l1 is the image of F under
the Whitehead move along the orbit G{l1}. If G is a finite index subgroup of GA,
recall that FA

G,A(l1)
is the image of FA under the Whitehead move along the orbit

G{A(l1)}.

We say that a sequence fn of quasisymmetric maps of S1 converges in the Te-
ichmüller metric to a quasisymmmetric map f of S1 if there exists a sequence
of quasiconformal extensions Fn : D → D of fn and a quasiconformal extension
F : D → D of f such that ‖µ(Fn) − µ(F )‖∞ → 0 as n → ∞. Note that the
Teichmüller metric on the space of quasisymmetric maps of S1 is a pseudometric.
The Teichmüller metric projects to a proper metric on the quotient of the space of
quasisymmetric maps of S1 by the action of PSL2(R) (where the action is given
by the post-composition of quasisymmetric maps with PSL2(R)).

We show below that the Whitehead homeomorphism from FA
G,A(l1)

to FA fol-

lowed by the Whitehead homeomorphism from F to FG,l1 converges to the identity
in the Teichmüller metric as A converges to the identity.

Theorem 3.3. Let A ∈ PSL2(Q) be a hyperbolic translation with the oriented axis
l0. Let GA and FA be as above, and let G be a finite index subgroup of GA. Let fid

be the Whitehead homeomorphism fixing l0 which maps FG,l1 onto F , and let gA
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be the Whitehead homeomorphism fixing l0 which maps FA
G,A(l1)

onto FA. Then

gA ◦ f−1
id → id

in the Teichmüller metric as A → id.

Proof. We denote by E(fid) and E(gA) the barycentric extensions of fid and gA,
respectively. It is enough to show that

‖µ(E(fid)) − µ(E(gA))‖∞ → 0

as A → id. (It is important to note that ‖µ(E(fid)) − µ(E(gA))‖∞ is equal to
supz∈D

|µ(E(fid))(z) − µ(E(gA))(z)| because the barycentric extensions of qua-
sisymmetric maps are analytic diffeomorphisms which implies that their Beltrami
dilatations are continuous maps.)

Assume on the contrary that there exist sequences wn ∈ D, An ∈ PSL2(Q)
and Gn < GAn

such that An is a hyperbolic translation with the oriented axis l0,
An → id as n → ∞, [GAn

: Gn] < ∞ and

(6) |µ(E(fid))(wn) − µ(E(gAn
))(wn)| ≥

1

N

for all n ∈ N and for a fixed N ∈ N. This implies that either |µ(E(fid))(wn)| or
|µ(E(gAn

))(wn)| is at least 1/N . By Lemma 3.2, there exists KN (z0,F) > 0 such
that V (E(fid)) is a subset of the KN (z0,F)-neighborhood of the orbit Gn{z0}.
Again by Lemma 3.2, there exists KN (z0,F

An) > 0 such that V (E(gAn
)) is a

subset of the KN(z0,F
An)-neighborhood of the orbit Gn{z0}.

Remark. Let l′1 be the diagonal of the ideal quadrilateral in (D\F)∪{l1} different
from l1. We note that the Whitehead homeomorphism f−1

id from F to FGn,l1 does
not necessarily map the orbit Gn{l1} in F onto the orbit Gn{l

′
1}; the Whitehead

homeomorphism g−1
An

from FAn to FAn

Gn,A(l1)
does not necessarily map the orbit

Gn{An(l1)} in FAn onto the orbit Gn{An(l′1)} in FA
Gn,A(l1)

. On the other hand,

F and FAn are both obtained by infinite number of inversions in any of their
triangles. Thus, it is better to consider inverse Whitehead homeomorphisms fid

and gAn
because the image tessellations of FGn,l1 and FAn

Gn,An(l1) are geometrically

well-behaved. This was utilized in the proof of Lemma 3.2 to claim that the support
of the barycentric extension of the Whitehead homeomorphism is “essentially” at
the place where the Whitehead move exchanges diagonals.

Remark. Note that An → id does not imply that l and An(l) are close uniformly
for all edges l of F . In fact, if the distance from l to l0 goes to infinity then the
distance between l and An(l) goes to infinity for each n fixed. It is essential that
we choose Whitehead moves along Gn{l1} and Gn{An(l1)} with l1 close to l0 and
fixed. Since l1 and An(l1) are close, then their images under Gn are close which
allows us to compare the two maps along the orbits Gn{l1} and Gn{An(l1)} whose
corresponding elements are close. The crucial fact that allows our method to work
is that maps E(fid) and E(gAn

) have small Beltrami dilatations far away from the
place where the Whitehead moves exchange the diagonals because we do not have a
uniform geometric control over the maps away from the places where the diagonals
are exchanged, see above remark.
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Let KN = max{KN(z0,F), KN (z0,F
A)}. Then, by (6) and by the choice of the

above neighborhoods of the Gn-orbit of z0, wn belongs to the KN -neighborhood
of the orbit Gn{z0}. Thus there exists γn ∈ Gn such that wn is in the KN -
neighborhood of γn(z0) for each n ∈ N. By the transitivity of PSL2(Z) on the
oriented edges of F and by the transitivity of An ◦ PSL2(Z) ◦A−1

n on the oriented
edges of FAn , there exist δn ∈ PSL2(Z) and δ′n ∈ An ◦ PSL2(Z) ◦ A−1

n such that
δn ◦ fid ◦ γn(l0) = l0 and δ′n ◦ gAn

◦ γn(l0) = l0.

Since An → id as n → ∞, it follows that [G0 : GAn
] → ∞ as n → ∞. This

implies that [G0 : Gn] → ∞ as n → ∞. The homeomorphism δn ◦ fid ◦ γn maps

FGn,l1 onto F , and the homeomorphism δ′n ◦ gAn
◦ γn maps FAn

Gn,An(l1)
onto FAn .

The sequence of tessellations FGn,l1 converges to the tessellation Fl1 which differs
from the Farey tessellation F by the Whitehead move on the single edge l1; the
sequence of tessellations FAn

Gn,An(l1) converges to the tessellation Fl1 as well; and

FAn converges to the Farey tessellation F (the convergence is in the Hausdorff
topology on compact subsets of the space of geodesics in D). The above convergence
of the tessellations and the normalizations of δn ◦fid ◦γn and of δ′n ◦gAn

◦γn implies
that both maps pointwise converge to the Whitehead homeomorphism fl1 which
maps Fl1 onto the Farey tessellation F and which fixes l0 (see Figure 4).

Since δn ◦ fid ◦ γn → fl1 and δ′n ◦ gAn
◦ γn → fl1 pointwise as n → ∞, it

follows that the Beltrami dilatations µ(δn ◦ E(fid) ◦ γn) = µ(E(fid) ◦ γn) and
µ(δ′n ◦E(gAn

) ◦ γn) = µ(E(gAn
) ◦ γn) converge uniformly on compact subsets of D

to the Beltrami dilatation µ(E(fl1)) of the barycentric extension E(fl1) of fl1 (see
[1]). Since γ−1

n (wn) belongs to the KN -neighborhood of z0, it follows that

|µ(E(fid) ◦ γn)(γ−1
n (wn)) − µ(E(gAn

) ◦ γn)(γ−1
n (wn))| → 0

as n → ∞. This is the same as

|µ(E(fid))(wn) − µ(E(gAn
))(wn)| → 0

as n → ∞. But this is in the contradiction with (6). The contradiction proves the
theorem. ✷

To finish the proof of Theorem 1 it is remains to establish that the circle home-
omorphisms gA ◦ f−1

id are not conformal maps. In fact, the proof below shows
this for A close enough to the identity and when the corresponding group G (that
determines the map fA) has a sufficiently large index.

Theorem 1. For every ǫ > 0 there exist two finite index subgroups of PSL2(Z)
which are conjugated by a (1+ ǫ)-quasisymmetric homeomorphism of the unit circle
and this conjugation homeomorphism is not conformal.

Proof. Recall that the Whitehead homeomorphism fid maps FG,l1 onto the Farey
tessellation F , and that the Whitehead homeomorphism gA maps FA

G,A(l1)
onto

FA, where G < GA is any subgroup of finite index. By Theorem 3.3, there exists
a neighborhood Uid of the identity in PSL2(Q) such that for any hyperbolic trans-
lation A ∈ Uid whose oriented axis is l0 the composition E(gA) ◦ E(fid)

−1 of the
barycentric extension of gA and fid has the quasiconformal constant less than 1+ ǫ.
It is enough to show that gA ◦ f−1

id conjugates a finite index subgroup of GA onto
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another finite index subgroup of PSL2(Z) and that gA ◦ f−1
id is not conformal (that

is, the homeomorphism gA ◦ f−1
id is not a Möbius transformation).

Let fn and gn be two Whitehead homeomorphisms corresponding to the White-
head moves along the orbits Gn{l1} and Gn{A(l1)} on F and FA, where Gn < GA

is a sequence of finite index subgroups with ∩∞
n=1Gn = {id}. In this case, the se-

quence fn converges pointwise to the Whitehead homeomorphism fl1 which maps
the tessellation Fl1 onto the Farey tessellation F , where Fl1 is the image of the
Farey tessellation F under the Whitehead move on a single edge l1. The sequence
gn pointwise converges to the Whitehead homeomorphism gA(l1) which maps FA

A(l1)

onto FA, where FA
A(l1)

is the image of FA under the Whitehead move on a single

edge A(l1) (see Figure 4).

To see that gn ◦ (fn)−1 is not a Möbius map for n large enough, it is enough
to show that gA(l1) ◦ f−1

l1
is not a Möbius map. We note that the Whitehead

homeomorphisms fl1 is given by f−1
l1

= id on [−1, 1] ⊂ S1, where

[−1, 1] = {z ∈ S1; −1, z, 1 are in the counterclockwise order}.

The restriction f−1
l1

|[x0,−1] is the unique element of PSL2(Z) which maps the ori-

ented geodesic (−1, x0) onto the oriented geodesic (−1, i), where x0 is the third
vertex of the complementary triangle of F to the left of the oriented geodesic
(−1, i) with (−1, i) on its boundary. Also, the restriction f−1

l1
|[i,x0] is the unique

element of PSL2(Z) which maps the oriented geodesic (x0, i) onto the oriented geo-
desic (i, y0), where y0 is the third vertex of the complementary triangle of F to the
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left of (i, 1) with (i, 1) on its boundary. Finally, f−1
l1

|[1,i] is the unique element of

PSL2(Z) which maps (i, 1) onto (y0, 1) (see Figure 5). Thus, the homeomorphism
f−1

l1
is a piecewise PSL2(Z) with four singular points −1, 1, i and x0. At these

points the map f−1
l1

changes its definition from one to another element of PSL2(Z)

(see Figure 5). It is interesting to note (although we do not use this fact) that the
homeomorphism f−1

l1
is differentiable at every point on the circle.

Similarly, the singular points where gA(l1) changes it definition from one to an-

other PSL2(Z) element are −1, 1, A(y0) and A(i). Then gA(l1) ◦f−1
l1

is the identity

on [−1, 1], but at the point i we have that f−1
l1

changes its definition from one to

another element of PSL2(Z), while the restriction of gA(l1) to a neighborhood of

f−1
l1

(i) = y0 equals a single element of PSL2(Z) (because A(y0) 6= y0). This implies

that gA(l1) ◦ f−1
l1

is not the identity in a neighborhood of i. Thus gA(l1) ◦ f−1
l1

is not

a Möbius map on S1. Consequently, gn ◦ (fn)−1 is not a Möbius map for all n large
enough. This completes the proof of Theorem 1. ✷

4. The punctured solenoid Sp

Ehrenpreis conjecture asks whether any two compact Riemann surfaces have
finite regular covers which are close to being conformal, i.e. if there exists a qua-
siconformal map between the covers which has quasiconformal constant arbitrary
close to 1. Instead of taking two arbitrary compact Riemann surfaces at a time and
studying their covers, an idea of Sullivan is to take all compact Riemann surfaces
at one time (i.e. in a single space) and keep track of the lifts via the action of a
Modular group. The same idea can be used for punctured surfaces. We give more
details below.
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Let T0 be the (once-punctured) Modular torus and let G0 < PSL2(Z) be its
universal covering group, i.e. T0 ≡ D/G0. Let S → T0 be any finite regular
covering of T0. Then there exists a natural isometric embedding T (T0) →֒ T (S) of
the Teichmüller space T (T0) of the Modular torus T0 into the Teichmüller space
T (S) of the covering surface S. Moreover, if for a finite regular covering S1 → T0

there exist finite regular coverings S2 → T0 and S1 → S2 such that the composition
S1 → S2 → T0 is equal to the original covering S1 → T0 then there is a natural
embedding T (S2) →֒ T (S1) such that the image of T (T0) in T (S2) is mapped onto
the image of T (T0) in T (S1). The inverse system of the finite regular coverings of T0

induces a direct system of Teichmüller spaces of the covering surfaces. We denote
the direct limit of the system of Teichmüller spaces of all finite regular coverings of
T0 by T∞ (see [5] for more details). The peripheral preserving commensurator group
Commper(G0) of the Modular torus group π1(T0) = G0 keeps track of different lifts
of the complex structure on the Modular torus. Thus, the Ehrenpreis conjecture is
equivalent to the statement whether Commper(G0) has dense orbit in T∞.

The Teichmüller space T (S) of any finite regular covering S → T0 embeds in the
universal Teichmüller space T (D) (i.e. the Teichmüller space of the unit disk D) as
follows. Let G < G0 be such that D/G ≡ S and that the covering D/G → D/G0

is conformally equivalent to S → T0. Then the image of T (S) in T (D) consists, up
to an equivalence, of all Beltrami dilatations µ on D such that

(7) µ(A(z))
A′(z)

A′(z)
= µ(z)

for all A ∈ G and z ∈ D. Two Beltrami dilatations µ and ν are equivalent if there
is a quasiconformal map of D whose Beltrami dilatation is µ−ν and which extends
to the identity on S1.

Thus the image of the embedding T∞ →֒ T (D) consists of all Beltrami dilata-
tions µ on D which satisfy (7) for some finite index subgroup G of G0. The image
of T (S) under the embedding T (S) →֒ T (D) is a finite-dimensional complex sub-
manifold of T (D) but the embedding is not an isometry for the Teichmüller metric
(in fact, it is a bi-biLipschitz map with the constant 1/3 [?]). The image of T∞

in T (D) is not a closed subspace. The completion T∞ of the image of T∞ is a
separable, complex Banach submanifold of T (D) [5]. The completion T∞ consists
of all Beltrami coefficients µ on D which are almost invariant under G0 (modulo
the equivalence relation), i.e. T∞ consists of all µ which satisfy

sup
A∈Gn

‖µ ◦ A
A′

A′
− µ‖∞ → 0

as n → ∞ where Gn is the intersection of all subgroups of G0 of index at most n.
(Note that each Gn is a finite index subgroup of G0 and that ∩∞

n=1Gn = {id}.) The
Ehrenpreis conjecture is also equivalent to the question whether Commper(S

p) has

dense orbits in T∞.

The points in T∞ \ T∞ are obtained as limits of quasiconformal maps between
finite Riemann surfaces. These points are represented by Beltrami coefficients on
D with the additional property of being almost invariant. Sullivan [9] introduced
a new object, called the universal hyperbolic solenoid, on which these limit points
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appear in a geometrically natural fashion as quasiconformal maps between the
universal hyperbolic solenoids. (Note that the quasiconformal maps between finite
surfaces lift to quasiconformal maps between the universal hyperbolic solenoids as
well.) We study the punctured solenoid Sp which is the counter part of the universal
hyperbolic solenoid in the presence of punctures. We give the details below. An
important feature is that the Teichmüller space T (Sp) of the punctured solenoid is
naturally isometrically and bi-holomorphically equivalent to T∞.

We recall the definition and basic properties of the punctured solenoid Sp [8],
which is an analogue in the presence of the punctures of the universal hyperbolic
solenoid introduced by Sullivan [9]. We keep the notation T0 for the Modular once
punctured torus. Then T0 is conformally identified with D/G0, where D is the unit
disk and G0 < PSL2(Z) is the unique uniformizing subgroup. Consider the family
of all finite degree, regular coverings of T0 ≡ D/G0. The family is inverse directed
and the inverse limit Sp is called the punctured solenoid (see [8]). The punctured
solenoid Sp is a non-compact space which is locally homeomorphic to a 2-disk times
a Cantor set(≡the transverse set); each path component, called a leaf, is a simple
connected 2-manifold which is dense in Sp. Sp has one topological end which is
homeomorphic to the product of a horoball and the transverse set of Sp modulo
continuous action by a countable group (see [8]). A fixed leaf of Sp is called the
baseleaf. The punctured solenoid Sp has a natural projection Π : Sp → T0 such
that the restriction to each leaf is the universal covering. The hyperbolic metric on
T0 lifts to a hyperbolic metric on each leaf of Sp and the lifted leafwise hyperbolic
metric on Sp is locally constant in the transverse direction. The punctured solenoid
has a unique holonomy invariant transverse measure (see [6]). When the transverse
measure is coupled with the leafwise measure given by the hyperbolic area on leaves,
the resulting product measure is finite on Sp.

We define an arbitrary marked hyperbolic punctured solenoid X to be a topolog-
ical space locally homeomorphic to a 2-disk times a Cantor set with transversely
continuous leafwise hyperbolic metrics together with a homeomorphism f : Sp → X
which is quasiconformal when restricted to each leaf and whose leafwise Beltrami
coefficients are continuous in the essential supremum norm over the global leaves
for the transverse variation (for more details see [8]). A hyperbolic metric on any
finite sheeted, unbranched cover of T0 gives a marked hyperbolic punctured solenoid
whose hyperbolic metric is transversely locally constant for a choice of local charts,
and any transversely locally constant punctured solenoid arises as a lift of a hyper-
bolic metric on a finite area punctured surface. We define the Teichmüller space
T (Sp) of the punctured solenoid Sp to be the space of all marked hyperbolic punc-
tured solenoids modulo an equivalence relation. Two marked hyperbolic punctured
solenoids f1 : Sp → X1 and f2 : Sp → X2 are equivalent if there exist an isometry
c : X1 → X2 such that the map f−1

2 ◦ c ◦ f1 : Sp → Sp is isotopic to the identity;
the equivalence class of f1 : Sp → X is denoted by [f1]. The set of all marked
transversely locally constant hyperbolic punctured solenoids is dense in T (Sp) (see
[9], [8]). The basepoint of T (Sp) is the equivalence class [id : Sp → Sp] of the
identity map.

The modular group Mod(Sp) (also called the baseleaf preserving mapping class
group MCGBLP (Sp) in the literature [6], [8]) of the punctured solenoid Sp consists
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of homotopy classes of quasiconformal self-maps of Sp which preserve the baseleaf.
The restriction to the baseleaf of Mod(Sp) gives an injective representation of
Mod(Sp) into the group of the quasisymmetric maps of S1 (see [6]). From now on,
we identify Mod(Sp) with this representation without further mentioning. Then
Mod(Sp) consists of all quasisymmetric maps of S1 which conjugate a finite index
subgroup of G0 onto (a possibly different) finite index subgroup of G0 such that
parabolic (peripheral) elements are conjugated onto parabolic (peripheral) elements
(see [6], [8]). In other words, Mod(Sp) is isomorphic to the subgroup Commper(G0)
of the abstract commensurator of G0 consisting of all elements which preserve
parabolics. In particular, Mod(Sp) contains PSL2(Q) and all lifts to the unit disk
D of the mapping class groups of the surfaces D/K, where K < G0 ranges over
all finite index subgroups. Recall that the Teichmüller space T (Sp) embeds into
the universal Teichmüller space T (D) by restricting the leafwise quasiconformal
homeomorphisms of Sp onto variable solenoids to the baseleaf. From now on, we
identify T (Sp) with its image in T (D) under this embedding. Then the Ehrenpreis
conjecture is equivalent to the question whether Mod(Sp) has dense orbits in T (Sp).

If the Ehrenpreis conjecture is correct then we show that for any ǫ > 0 and for
any finite Riemann surface there exist two finite degree, regular covers and a (1+ǫ)-
quasiconformal map between the covers which is not homotopic to a conformal map.
We remark that Theorem 1 establishes the existence of such covers for the Modular
punctured torus T0 and any of its finite regular covers (without the assumption that
the Ehrenpreis conjecture is correct) but it seems a difficult question to establish
the existence of such covers for an arbitrary punctured surface.

Lemma 4.1. Assume that the Ehrenpreis conjecture is correct. Then for any ǫ > 0
and for any finite Riemann surface there exist two finite degree, regular covers
and a (1 + ǫ)-quasiconformal map between the covers which is not homotopic to a
conformal map.

Proof. Since we assumed that the Ehrenpreis conjecture is correct, we get that the
orbits of Mod(Sp) are dense in T (Sp). Let S be an arbitrary finite area punctured
hyperbolic surface and let f : S0 → S be a quasiconfomal map from a finite,
unbranched covering surface S0 of the Modular punctured torus T0 to the surface
S. We note that the map f : S0 → S lifts to a map f̃ : Sp → X and that the
equivalence class [f̃ ] is an element of the Teichmüller space T (Sp). Then the orbit

under Mod(Sp) of [f̃ ] ∈ T (Sp) is dense and, in particular, it accumulates onto [f̃ ].

Let gn ∈ Mod(Sp) be a sequence such that [f̃ ◦ g−1
n ] → [f̃ ] as n → ∞. This implies

that the Beltrami dilatation of f̃ ◦ g−1
n ◦ f̃−1 is converging to zero as n → ∞ but

the dilatation of any quasiconformal map homotopic to f̃ ◦ g−1
n ◦ f̃−1 is not equal

to zero. The map f̃ ◦ g−1
n ◦ f̃−1 conjugates a finite index subgroup of π1(S) to

a different subgroup of π1(S). The two subgroups of π1(S) are conjugated by a
quasiconformal map with a small Beltrami dilatation and therefore they establish
the lemma. ✷

In our previous work [4], we find an infinite family of orbits with accumulation
points outside the orbits. In particular, T (Sp)/Mod(Sp) is not a Hausdorff space.
The points of the orbits are non-transversely locally constant points in T (Sp) (i.e.
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they correspond to points in T∞ \ T∞) and elements of Mod(Sp) which give accu-
mulation points are in G0. In this paper, we find accumulation points outside the
orbit of a transversely locally constant point in T (Sp) (i.e. a point in T∞) corre-
sponding to the basepoint [id : Sp → Sp] for the hyperbolic metric on Sp obtained
by the lift of the hyperbolic metric on T0 ≡ D/G0.

We show that the closure of the orbit under the modular group of the basepoint
[id] ∈ T (Sp) is strictly larger than the orbit and that the closure is uncountable.
We use Baire category theorem and Theorem 3.3 together with fact that elements
in Theorem 3.3 are not Möbius which is established in the course of the proof of
Theorem 1.

Corollary 2. The closure in the Teichmüller metric of the orbit under the modular
group Mod(Sp) of the basepoint in T (Sp) is strictly larger than the orbit. Moreover,
the closure of the orbit is an uncountable set without isolated points.

Remark. We showed in [4] that there is a set of points in T (Sp) such that the clo-
sures of their orbits under the modular group Mod(Sp) are strictly larger than the
orbits. These points were all non-transversely locally constant points in T (Sp). The
above corollary establishes that the orbit of the basepoint, which is a transversely
locally constant point, under the modular group Mod(Sp) contains points outside
the orbit. However, it is still unknown whether any of the accumulation points
of the orbit of the basepoint is a transversely locally constant point in T (Sp).
This is equivalent to the question whether we can find an example of two non-
commensurate surfaces for which the Ehrenpreis conjecture is correct.

Proof. We use Baire category theorem. Assume on the contrary that the closure
of the orbit under Mod(Sp) of the basepoint in T (Sp) is equal to the orbit.

Thus the orbit is a closed subset in T (Sp), hence it is of the second kind in itself
(in the sense of Baire). We claim that there exists a point of the orbit which is
an isolated point. If not, then each point of the orbit is nowhere dense. Since a
single point in a metric space is always a closed subset, it follows that the orbit can
be written as a countable union of its singletons (which are nowhere dense closed
sets). This contradicts the Baire theorem.

Therefore, at least one point [f ] ∈ T (Sp) where f ∈ Mod(Sp) is isolated.
Choose a sequence fn ∈ Mod(Sp) satisfying the properties in Theorem 3.3 such
that ‖µ(E(fn))‖∞ → 0 as n → ∞. Then fn ◦ f ∈ Mod(Sp) is in the orbit of the
basepoint and [fn ◦ f ] → [f ] as n → ∞ in the Teichmüller metric on T (Sp). This is
a contradiction. Therefore, the closure of the orbit under Mod(Sp) of the basepoint
in T (Sp) is strictly larger than the orbit.

We proceed to prove that the closure of the orbit is uncountable. Assume on the
contrary that the orbit is countable. Then there exists an isolated point f of the
closure of the orbit by the above argument. The isolated point f is necessarily in
Mod(Sp) because the accumulation points of Mod(Sp) in T (Sp) are not isolated.
Then the above argument establishes a contradiction. Therefore the closure is
uncountable. ✷
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In the corollary below, we show how to explicitly construct sequences in the orbit
under Mod(Sp) of the basepoint in T (Sp) which accumulate to points outside the
orbit.

Corollary 4.2. There exists a sequence fn ∈ Mod(Sp) whose elements are con-
structed as in Theorem 3.3 such that [fn ◦ fn−1 ◦ · · · ◦ f1] converges to [f ] ∈ T (Sp),
where f /∈ Mod(Sp).

Proof. We choose a sequence fn ∈ Mod(Sp) such that ‖µ(E(fn))‖∞ < 1/2n+1 and
inf{g:g|

S1=fn|
S1} ‖µ(g)‖∞ > 0 which is possible by Theorem 3.3, where E(fn) is the

barycentric extension of fn. Then the sequence E(fn) ◦ E(fn−1) ◦ · · · ◦ E(f1) has
uniformly convergent Beltrami coefficients. Therefore, fn ◦ fn−1 ◦ · · · ◦ f1 converges
in the Teichmüller metric in T (Sp).

The sequence fn can be chosen such that each fn conjugates a maximal finite
index subgroup Hn of PSL2(Z) onto another finite index subgroup Kn of PSL2(Z),
where [PSL2(Z) : Hn] → ∞ as n → ∞. To see this we take An → id as in Theorem
3.3 and for each n consider a sequence of finite index subgroups Gkn

of GAn
which

are obtained as intersections of all subgroups of GAn
of index at most kn. We

define fn,kn
using Gkn

and An as in Theorem 3.3. Assume that for a fixed n all
such obtained maps fn,kn

conjugate a fixed finite index subgroup K < PSL2(Z)
onto another (possibly different but of the same index) subgroup of PSL2(Z).
Since all fn,kn

fix l0 by construction, it follows that fn,kn
converges pointwise to

fAn(l1) ◦ f−1
l1

as kn → ∞ and n fixed, where fl1 is a Whitehead homeomorphisms
which maps Fl1 onto F , and fAn(l1) is a Whitehead homeomorphism which maps

FAn

An(l1)
onto FAn(l1). We showed in the proof of Theorem 1 that fAn(l1) ◦ f−1

l1
is

a piecewise Möbius but not a Möbius map. Then fAn(l1) ◦ f−1
l1

cannot conjugate

a finite index subgroup of PSL2(Z) onto itself. Therefore, for kn large enough,
fn,kn

does not conjugate K onto another finite index subgroup. Therefore, we can
choose kn large enough such that fn,kn

conjugates a maximal subgroup Hn of finite
index in PSL2(Z) onto another finite index subgroup with [PSL2(Z) : Hn] → ∞
as n → ∞. Moreover, the subgroups Hn can be chosen such that ∩∞

n=1Hn = {id}.
If we further enlarge kn the above remains true.

We put the elements of G0 in a sequence {γi}
∞
i=1. For each n and for each i,

there exists kn(i) such that γi /∈ Gkn(i). This implies that γi /∈ Gj for all j ≥ kn(i).
We apply Cantor’s diagonal argument. For γ1, we choose n = n(1) arbitrary. Then
fn(1),kn(1) does not conjugate γ1 onto any other element of PSL2(Z). We consider
the minimal dilatation

min(fn(1),kn(1))(γ1) := inf
{g;g|

S1=fn(1),kn(1)}
‖µ(g) − µ(g ◦ γ1)‖∞.

In the case that min(fn(1),kn(1))(γ2) = 0 then we choose n(2) small enough

such that ‖µ(E(fn(2),kn(2)))‖∞ < 1
4 min(fn(1),kn(1))(γ1). If min(fn(1),kn(1))(γ2) > 0

we choose n(2) such that ‖µ(E(fn(2),kn(2)))‖∞ is less than 1
4 of the minimum of

min(fn(1),kn(1))(γ1) and min(fn(1),kn(1))(γ2). In both cases we are guaranteed that
fn(2),kn(2) ◦ fn(1),kn(1) does not conjugate γ1 or γ2 onto an element of PSL2(Z).

For γ3, we choose n(3) such that ‖µ(E(fn(3),kn(3)))‖∞ is less than 1
4 of the mini-

mum of min(fn(2),kn(2))(γ1), min(fn(2),kn(2) ◦ fn(1),kn(1))(γ2) and min(fn(2),kn(2) ◦
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fn(1),kn(1))(γ3). This guarantees that fn(3),kn(3) ◦ fn(2),kn(2) ◦ fn(1),kn(1) does not
conjugate γi, for i = 1, 2, 3 onto elements of PSL2(Z). We continue this process
for all i ∈ N.

By our choice of n(i), the series
∑∞

i=1 ‖µ(E(fn(i),kn(i)))‖∞ converges. Thus the
sequence fn(i),kn(i) ◦ fn(i−1),kn(i−1) ◦ · · · ◦ f1 converges in the Teichmüller metric.
By the above choices, the limit does not conjugate a single element of G0 onto any
other element of PSL2(Z). Thus the limit is not in the orbit under the modular
group Mod(Sp) of the base point in T (Sp). ✷
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