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Abstract. We discuss universal properties of general Teichmüller spaces. Our
topics include the Teichmüller metric and the Kobayashi metric, extremality
and unique extremality of quasiconformal mappings, biholomorphic maps be-
tween Teichmüller space, earthquakes and Thurston boundary.

1. Introduction

Today, Teichmüller theory is a substantial area of mathematics that has inter-
actions with many other subjects. The bulk of this theory is focused on studying
Teichmüller spaces of finite type Riemann surfaces. In this article we survey the
theory that investigates all Teichmüller spaces regardless of their dimension. We
aim to present theorems (old and recent) that illustrate universal properties of
Teichmüller spaces.

Teichmüller spaces of finite type Riemann surfaces (or just finite Riemann sur-
faces) are finite-dimensional complex manifolds with rich geometric structures. Te-
ichmüller spaces of infinite type Riemann surfaces are infinite-dimensional Banach
manifolds whose geometry differs significantly from the finite case. However, some
statements hold for both finite and infinite cases. The intent is to describe these
universal properties of all Teichmüller spaces and to point out to differences between
finite and infinite cases when these are well understood.

The following is the list of topics covered. In the second section we briefly in-
troduce quasiconformal maps and mention their basic properties. Then we proceed
to give the analytic definition of Teichmüller spaces, regardless whether the un-
derlying Riemann surface is of finite or infinite type. We define the Teichmüller
metric and introduce the complex structure on Teichmüller spaces. Next we dis-
cuss the Kobayashi metric, the tangent space and the barycentric extensions. In
the third section we consider the geometry of Teichmüller spaces. We cover the
Reich-Strebel inequality and the Teichmüller theorem, the Finsler structure, the
universal Teichmüller space, extremal and uniquely extremal quasiconformal maps.
In section four we consider biholomorphic maps between Teichmüller spaces and
give a short proof that the modular group is the full group of biholomorphic maps
of the Teichmüller space of a finite surface following [20]. In section five we consider
earthquakes and bending on infinite surfaces, and we introduce Thurston boundary
for general Teichmüller spaces.
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2. The Teichmüller space: definition, the Teichmüller and Kobayashi
metric, the complex structure and barycentric extension

We start with basic definitions. Let M be a Riemann surface. The Uniformisa-
tion theorem states that the universal covering of M is either the complex plane
C, the Riemann sphere Ĉ = C ∪ {∞} or the upper half-plane H. The complex
plane C, the once punctured complex plane C \ {0} and the torus T is the short
list of Riemann surfaces covered by C. The Riemann sphere Ĉ is the only Riemann
surface whose universal covering is Ĉ. The Teichmüller spaces of Ĉ, C and C \ {0}
consist of a single point, while the Teichmüller space of the torus T is biholomor-
phic to the upper half-plane H and isometric to the hyperbolic plane (for example,
see [41]). Thus, the Teichmüller space of a Riemann surface M whose universal
covering is either Ĉ or C is well understood. We focus on the case when H is the
universal covering.

A quasiconformal map f : H → H is an orientation preserving homeomorphism
which is absolutely continuous on lines and which satisfies ‖∂̄f/∂f‖∞ < 1. The
Beltrami coefficient µ = ∂̄f/∂f of a quasiconformal map f is defined almost every-
where and it satisfies ‖µ‖∞ < 1. The quasiconformal constant K(f) of f is given
by K(f) = 1+‖µ‖∞

1−‖µ‖∞ . Note that ‖µ‖∞ < 1 if and only if K(f) < ∞.
Given a measurable function µ on H such that ‖µ‖∞ < 1, then there exists a

quasiconformal map f : H → H such that µ = ∂̄f/∂f . The quasiconformal map f
is unique up to post-composition by a Möbius map preserving H (see [4]).

2.1. Definition of the Teichmüller space. From now on we assume that the
universal covering of a Riemann surface M is the upper half-plane H. We identify
the hyperbolic plane with the upper half-plane H equipped with the metric ρ(z) =
|dz|
2y , where z = x + iy ∈ H. The universal covering map π : H → M induces a

hyperbolic metric on M . The Riemann surface M is said to be hyperbolic.
Let G be a Fuchsian group acting on the upper half-plane H such that M is

conformal and isometric to H/G. (The group G is unique up to conjugation by a
Möbius map fixing H.) Let PSL2(R) denote the subgroup of the Möbius group
which fixes the upper half-plane H.

Definition 2.1. Let M be a hyperbolic surface. Let G be a Fuchsian group such
that M is isomorphic to H/G. The Teichmüller space T (M) of M consists of
equivalence classes of quasiconformal maps f : H → H which satisfy the following
condition

(1) f ◦ γ ◦ f−1 ∈ PSL2(R),

for all γ ∈ G. Two such quasiconformal maps f1, f2 : H → H are equivalent if their
extensions to the extended real line R̂ = R∪{∞} agree up to a post-composition by
a Möbius map, i.e. f1 is equivalent to f2 if f1|R̂ = β ◦f2|R̂ for some β ∈ PSL2(R).

Remark. The definition of T (M) depends on the choice of the Fuchsian group G.
Since G is unique up to conjugation by an element of PSL2(R) it is easy to check
that all subsequent definitions are independent of this choice. We denote by [f ] the
equivalence class of the quasiconformal map f : H → H satisfying the invariance
property (1). Then [f ] ∈ T (M).
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Remark. In the above definition, we could replace quasiconformal maps of H with
quasisymmetric maps of R̂ which satisfy the invariance property (1) on R̂. This
follows from the Douady-Earle barycentric extension [12].

Remark. The map f : H → H which satisfies the invariance property (1) projects to
a quasiconformal map f̂ : M → M1, where M = H/G and M1 is a Riemann surface
whose covering Fuchsian group is fGf−1. The condition that f1|R̂ = β ◦ f2|R̂ is
equivalent to the property that the projections f̂1 and f̂2 map M onto the same
surface and that they are isotopic through a bounded quasiconformal isotopy. The
last statement was proved by Earle and McMullen [22] using the Douady-Earle
extension.

2.2. The Teichmüller metric. The Teichmüller space T (M) carries a natural
metric defined as follows.

Definition 2.2. Let [f ], [g] ∈ T (M). The Teichmüller distance between [f ] and [g]
is given by

d([f ], [g]) = inf
g1∈[g],f1∈[f ]

1
2

log K(g1 ◦ f−1
1 ).

It is easy to check that this distance is in fact a metric. The space (T (M), d) is
a complete and non-compact metric space.

2.3. The complex structure on the Teichmüller space. The Teichmüller
space is equipped with a natural complex structure as follows. Let [f ] ∈ T (M)
and let µ = ∂̄f/∂f be the Beltrami coefficient of f . Then ‖µ‖∞ < 1 and

(2) µ(z) = µ(γ(z))
γ′(z)
γ′(z)

for z ∈ H and γ ∈ G. Let L = C \H be the lower half-plane. Given a Beltrami
coefficient µ on H which satisfies (2), we define the Beltrami coefficient µ̂ on Ĉ by
µ̂(z) = µ(z) for z ∈ H, and µ̂(z) = 0 for z ∈ L. Then µ̂ satisfies (2) for all z ∈ Ĉ.
There exists a quasiconformal map f : Ĉ → Ĉ whose Beltrami coefficient is µ̂ (see
[4] for the solution of the Beltrami equation ∂̄f = µ̂ ·∂f). Moreover, f is unique up
to a post-composition by a Möbius map of the Riemann sphere Ĉ, it is conformal
in L and it satisfies the invariance relation (1) in Ĉ. Denote this map by f µ̂.

Let g be a locally injective holomorphic map defined in a domain on Ĉ. Then
the Schwarzian derivative S(g) of g is given by

S(g) =
g′′′

g′
− 3

2

(g′′

g′

)2

.

We recall that the Schwarzian derivative measures by how much a holomorphic
map distorts cross-ratios of four points (see [34, Section 6.1]). In particular, the
Schwarzian derivative of a Möbius map is zero.

If we apply the Schwarzian derivative to f µ̂ in L, then we obtain a holomorphic
map S(f µ̂) on L which satisfies

(3) (S(f µ̂) ◦ γ)(z)(γ′(z))2 = S(f µ̂)(z)

and

(4) sup
z∈L

|S(f µ̂)(z)ρ−2
L (z)| < ∞
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for z ∈ L and γ ∈ G, where ρL(z) = |dz|
2|y| is the Poincaré metric on L (see [6], [29]

or [34]).

Let BL(G) be the Banach space of all holomorphic maps ψ : L → C which satisfy
ψ(γ(z))γ′(z)2 = ψ(z), for z ∈ L and γ ∈ G, and ‖ψρ−2

L ‖∞ = supz∈L |ψ(z)ρ−2
L (z)| <

∞, where ‖ψρ−2
L ‖∞ is the norm on BL(G). Note that S(f µ̂) ∈ BL(G).

If a quasiconformal map f : H → H satisfies the invariance property (1), then
the Beltrami coefficient µ = ∂f/∂f of f satisfies the invariance property (2) (and
‖µ‖∞ < 1). Conversely, given measurable µ : H → C such that ‖µ‖∞ < 1 and (2)
holds for µ, then there exists a quasiconformal map f : H → H whose Beltrami
coefficient is µ and which satisfies (1) (see [4]). The map f is unique up to post-
composition by an element of PSL2(R). (Note that [β ◦ f ] = [f ] for β ∈ PSL2(R)
by the definition of the Teichmüller equivalence.)

Let L∞(G) be the Banach space of all measurable essentially bounded functions
µ on H which satisfy the property (2). Let U(G) be the open unit ball in L∞(G),
namely U(G) = {µ ∈ L∞(G) : ‖µ‖∞ < 1}. Then we have the Schwarzian derivative
map

(5) S : U(G) → BL(G)

given by S(µ) = S(f µ̂), where µ̂ = µ on H and µ̂ = 0 on L. By the above, the
Teichmüller space T (M) is identified with the quotient of U(G), where µ1, µ2 ∈
U(G) determine the same point in T (M) if and only if fµ1 |R̂ = β ◦ fµ2 |R̂ for some
β ∈ PSL2(R). The following result of Bers and Ahlfors-Weil (see [6], [29], [34,
Section 6], [3], [56]) gives a natural complex Banach manifold structure to general
Teichmüller spaces.

Theorem 2.1 (Bers Embedding Theorem and Ahlfors-Weil Section). Let M be a
hyperbolic surface and let G be a Fuchsian group such that H/G is conformal to
M . The Schwarzian derivative map S : U(G) → BL(G) induces an injective map

(6) Φ : T (M) → BL(G)

such that Φ(T (M)) is an open, bounded subset of BL(G). The map Φ is a homeo-
morphism onto its image and defines a global holomorphic chart for T (S). More-
over, given any Φ([µ]) = ϕ ∈ Φ(T (M)) ⊂ BL(G) there exists a neighbourhood Vϕ

of ϕ and a holomorphic map sϕ : Vϕ → U(G) such that S ◦ sϕ = id on Vϕ and
sϕ ◦ S(µ) = µ.

Remark. The fact that S : U(G) → BL(G) induces a map on the Teichmüller space
T (M) is equivalent to the statement that if µ and µ1 give rise to two Teichmüller
equivalent maps of H then S(f µ̂) = S(f µ̂1). The induced map on the Teichmüller
space is injective if and only if whenever S(f µ̂) = S(f µ̂1) we have that µ and µ1

are Teichmüller equivalent.

Remark. Let µ be in U(G). Then the quasiconformal map fµ : H → H, whose
Beltrami coefficient is µ, conjugates G onto a Fuchsian group Gµ. Let Mµ = H/Gµ.
There is a natural bijection T (µ) : T (Mµ) → T (M) given by [g] 7→ [g ◦ fµ] which
is an isometry for the Teichmüller metrics. (The map T (µ) is called the translation
map.) Let Φµ : T (Mµ) → B(Gµ) be the Bers map for Mµ (see above for the
definition). The fact that Φ : T (M) → BL(G) is a global complex chart is equivalent
to the statement that Φ ◦ T (µ) ◦Φ−1

µ : Φµ(T (Mµ)) → Φ(T (M)) is a biholomorphic
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map. The fact that the map is holomorphic is a direct consequence of the cocycle
property for the Schwarzian (for example, see [34, Section 6.4]).

The asymptotic Teichmüller space AT (M) of a geometrically infinite Riemann
surface M is the quotient of the Teichmüller space T (M) as follows. The quasi-
conformal map f : M → M1 is said to be asymptotically conformal if for every
ε > 0 there exists a compact set K ⊂ M such that ‖(∂̄f/∂f)|M\K‖∞ < ε. By
the definition, [f ], [g] ∈ T (M) determine the same point in AT (M) if [f ◦ g−1]
has an asymptotically conformal representative (see [35], [15]). The Bers map Φ :
T (M) → BL(G) induces the asymptotic Bers map Φ̄ : AT (M) → BL(G)/B0

L(G),
where B0

L(G) is the space of all ψ ∈ BL(G) which vanish at infinity on L/G (i.e.
ψ ∈ B0

L(G) if for every ε > 0 there exists a compact set K ⊂ L/G such that
‖ψρ−2

L |L\K̃ < ε, where K̃ is the lift of K to L). Earle, Gardiner and Lakic [15]
showed that the asymptotic Bers map is a local homeomorphism. Later Earle,
Markovic and Šarić [21] proved the following theorem that completed the picture
for AT (M).

Theorem 2.2. Let M be a geometrically infinite Riemann surface and let G be a
Fuchsian group such that M is isomorphic to H/G. Then the asymptotic Bers map

Φ̄ : AT (M) → BL(G)/B0
L(G)

is a biholomorphic map onto a bounded open subset of BL(G)/B0
L(G).

For more recent work in this area see [52], [53] , [48], [49].

2.4. The Kobayashi metric on the Teichmüller space. On a given complex
Banach manifold one can define (in several ways) a natural pseudo-metri in terms
of the underlying complex structure.

Definition 2.3. Let X be a complex Banach manifold and let TX be its complex
tangent bundle. Let Hol(Dr, X) be the space of holomorphic maps from Dr into
X. Let (v, x) be the tangent vector at x ∈ X. The Kobayashi pseudo-metric kX :
TX → R is given by

(7) kX(v, x) = inf{ 1
r
| ∃f ∈ Hol(Dr, X) : f(0) = x and df0(∂/∂z) = v}.

It is a well-known fact that the Kobayashi pseudo-metric on a complex man-
ifold X is the largest pseudo-metric such that any map in Hol(D, X) is weakly
contracting for the Poincaré metric on the unit disk D. This metric is very rarely
Riemannian but it has a Finsler structure.

The following theorem is due to Royden [59] in the case of a closed Riemann
surfaces. In the case of a geometrically infinite Riemann surfaces it is proved by
Gardiner [30].

Theorem 2.3. Let M be a hyperbolic Riemann surface. Then the Teichmüller
metric is equal to the Kobayashi metric on the Teichmüller space T (M) of M .

Remark. In particular, the Kobayashi pseudo-metric is a metric on T (M).

Definition 2.4. A holomorphic motion of a set E ⊂ Ĉ is a mapping f : D×E → Ĉ
which satisfies

(1) f(0, z) = z for all z ∈ E
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(2) the map z 7→ f(t, z) is injective for all t ∈ D
(3) for each z ∈ E, the mapping t 7→ f(t, z) is holomorphic in t ∈ D

The holomorphic motions were introduced by Mañé, Sad and Sullivan [44]. They
proved the following important property of holomorphic motions of C.

Theorem 2.4. Let f : D× Ĉ → Ĉ be a holomorphic motion. Then ft = f(t, ·) is
a quasiconformal map for each t ∈ D such that the quasiconformal constant K(t)
of ft satisfies K(t) ≤ 1+|t|

1−|t| . In addition, the map t → µt is a holomorphic map
from D onto the unit ball U of L∞(D) where µt is the Beltrami coefficient of ft.

A natural question was whether a holomorphic motion of a subset of Ĉ extends
to a holomorphic motion of Ĉ. This was positively answered by Slodkowski [66].

Theorem 2.5. Let f : D× E → Ĉ be a holomorphic motion of a closed subset E

of Ĉ. Then the holomorphic motion f of E extends to a holomorphic motion of Ĉ.

Earle, Kra and Krushkal [18] obtained a group invariant version of the Slod-
kowski’s Extension Theorem as follows.

Theorem 2.6. Let f : D×E → Ĉ be a holomorphic motion of a closed set E ⊂ Ĉ
which contains at least three points. Let G be a group of Möbius maps which setwise
preserve E. If for each γ ∈ G and t ∈ D there exists a Möbius map γt such that

f(t, γ(z)) = γt(f(z, t))

for z ∈ E and t ∈ D, then f can be extended to a holomorphic motion of Ĉ which
also satisfies the above invariance property.

Earle, Kra and Krushkal [18] used Theorem 2.6 to give a new and unified proof of
Royden’s theorem that the Kobayashi metric on T (M) is equal to the Teichmüller
metric. Other applications of the invariant extensions of holomorphic motions are
discussed in the next section. For further study and applications of holomorphic
motions see [50], [51].

2.5. The tangent space to the Teichmüller space. The Bers embedding (see
Theorem 2.1) shows that the Teichmüller space T (M) of a hyperbolic surface M is
embedded in the Banach space BL(G) as an open bounded subset. This embedding
provides a global holomorphic chart for T (M). Thus the tangent space at the
basepoint of T (M) is identified with BL(G).

Let [f ] ∈ T (M) and let µ be the Beltrami coefficient of f . Since µ satisfies (2),
it follows that f conjugates G onto another Fuchsian group Gµ. We noted that
the translation map T (µ) : T (Mµ) → T (M) is biholomorphic. (Recall that the
translation map T (µ) sends the basepoint of T (Mµ) to the point [f ] ∈ T (M).)
Thus the tangent space at [f ] ∈ T (M) is isomorphic to the tangent space at the
basepoint of T (Mµ).

The Teichmüller space T (M) is defined as a quotient of the open unit ball U(G)
in L∞(G) with respect to the relation (2). We also note that the Schwarzian de-
rivative map S : U(G) → BL(G) is holomorphic. This follows from the measurable
Riemann mapping theorem (see Ahlfors and Bers [4]). This implies that a dif-
ferentiable path t 7→ µt in U(G) projects to a differentiable path t 7→ S(µt) in
BL(G). The Ahlfors-Weil section gives a holomorphic section s of the Schwarzian
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map S : U(G) → BL(G) from a neighbourhood of the basepoint in T (M) into
U(G). Thus, a differentiable path through a neighbourhood of the origin in BL(G)
lifts to a differentiable path in U(G) through the origin. Since the derivative of
a differentiable path in U(G) gives an element in L∞(G), we conclude that each
Beltrami differential µ ∈ L∞(G) represents a tangent vector at the basepoint in
T (M), and conversely each tangent vector at the basepoint of T (M) is represented
by some µ ∈ L∞(G). A single tangent vector is represented by many Beltrami dif-
ferentials. We denote by [µ]tan the class of all Beltrami differentials which represent
the same tangent vector as µ ∈ L∞(G). (Recall that for µ ∈ U(G), we denote by
[µ] its Teichmüller class, i.e. the point in T (M) represented by µ.)

The Bers embedding and the Bers reproducing formula [6] provide the criteria
for two Beltrami differentials to represent the same tangent vector at the basepoint
of T (M). Let M = H/G and let ω be a fundamental polygon for G in H. We
denote by BH(G) the space of all holomorphic functions ψ : H → C which satisfy
the condition (3) in H. Let

(8) A(G) = {φ ∈ BH(G) : ‖φ‖L1(ω) =
∫∫

ω

|φ(z)|dxdy < ∞}

and let

(9) N(G) = {µ ∈ L∞(G) :
∫∫

ω

µ(z)φ(z)dxdy = 0 for all φ ∈ A(G)}.

The following is a theorem of Ahlfors-Bers.

Theorem 2.7. Let M be a hyperbolic Riemann surface and let G be a Fuchsian
group such that M = H/G. Then the Schwarzian derivative map S : U(G) →
T (M) has a Fréchet derivative Ṡ = P which is a bounded, linear projection map
P : L∞(G) → BL(G) given by

(10) P (µ)(z) = − 6
π

∫∫

H

µ(ζ)
(ζ − z̄)4

dηdξ.

The kernel ker(P ) of the projection map P is N(G). This implies that P induces
a linear isomorphism

P̄ : L∞(G)/N(G) → BL(G).

Remark. Let µ ∈ L∞(G). The above theorem states that [µ]tan = µ + N(G).

2.6. The Douady-Earle extension. Every quasiconformal homeomorphism f :
H → H extends continuously to a homeomorphism of R̂, and this extension is
a quasisymmetric map [3]. Conversely, a quasisymmetric map of R̂ extends to
a quasiconformal map of H [11]. This shows that there is a bijection between
the Teichmüller space T (H) of the upper half-plane H (called the universal Te-
ichmüller space) and the space of all quasisymmetric maps of R̂ up to an equiva-
lence, where two quasisymmetric maps h1, h2 : R̂ → R̂ are equivalent if there exists
β ∈ PSL2(R) such that h1 = β ◦ h2.

Let M be a hyperbolic surface and let G be a Fuchsian group such that M =
H/G. Then the Teichmüller space T (M) embeds into the space of quasisymmetric
maps of R̂ up to the above equivalence and the quasisymmetric maps h : R̂ → R̂
in the image satisfy the invariance property

(11) h ◦ γ ◦ h−1 ∈ PSL2(R)
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for all γ ∈ G. To show that every quasisymmetric map which satisfies (11) is in
the image of T (M), it was needed to find a quasiconformal extension of quasisym-
metric maps which satisfy the invariance property (11) in H. This was achieved by
Douady and Earle [12] and their extension enjoys many other important proper-
ties. We denote by Homeo(R̂) and Homeo(H) the space of orientation preserving
homeomorphisms of the extended real line R̂ and the space of orientation preserving
homeomorphisms of the upper half-plane H, respectively.

Theorem 2.8. There exists a map ex : Homeo(R̂) → Homeo(H) with the follow-
ing properties:

(1) ex(id) = id,
(2) ex(h)|R̂ = h for h ∈ Homeo(R̂),
(3) ex(h) and ex(h)−1 are real analytic,
(4) if α, β ∈ PSL2(R) then ex(α◦h◦β) = α◦ex(h)◦β (conformal naturality),
(5) if h is quasisymmetric then ex(h) is quasiconformal.

Remark. One can construct the barycentric extension by using certain dynamical
systems on the unit disc (see [1]). For the barycentric extensions of monotone maps
see [2].

The barycentric map b : U(H) → U(H) is defined as follows. For µ ∈ U(H) we
denote by fµ a quasiconformal map of H onto itself whose Beltrami coefficient is
µ. Then b(µ) is the Beltrami coefficient of ex(fµ|R̂). The following theorem states
further properties of the barycentric extension.

Theorem 2.9. The barycentric map b : U(H) → U(H) satisfies the following
properties:

(1) The Beltrami coefficient β(µ) is a real analytic function on H,
(2) b(µ) = b(ν) if and only if µ and ν are Teichmüller equivalent,
(3) f b(µ)|R̂ = β ◦ fµ|R̂ for some β ∈ PSL2(R),
(4) b(b(µ)) = b(µ).

The above theorem has an immediate corollary for the topology of general Te-
ichmüller spaces.

Corollary 2.1. The Teichmüller space T (M) of a hyperbolic surface M is con-
tractible.

Remark. The contractibility for Teichmüller spaces of finite Riemann surfaces M
is a corollary of the Teichmüller Theorem 3.2. Namely, the Teichmüller space
T (M) of a finite Riemann surface M is homeomorphic to the open unit ball in
A(G) (for example see [29]). However, for geometrically infinite Riemann surfaces
such identification is not valid. See Section 5 and [65] for another approach to
contractibility.

3. The geometry of general Teichmüller spaces

We consider metric properties of the Teichmüller metric on general Teichmüller
spaces. Note that the Teichmüller distance between the basepoint [id] and [f ] is
given by

d([f ], [id]) =
1
2

inf
f1∈[f ]

log K(f1)
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for [f ], [id] ∈ T (M). Since the family of normalised K-quasiconformal maps is
compact for the uniform convergence on compact sets, it follows that the infimum
in the definition of the Teichmüller metric is achieved for some map f∗ ∈ [f ]. We
call the map f∗ an extremal map. An extremal map has the smallest quasiconformal
dilatation among all maps homotopic to f , and it is not necessarily a unique map
with this property.

3.1. Extremal maps and geodesics. By the above remarks, the Teichmüller
distance between the basepoint [id] and any other point [f ] ∈ T (M) is given by
1/2 log K(f∗), where f∗ is an extremal map. Let µ∗ be the Beltrami coefficient of
the extremal map f∗. Then K(f∗) = 1+‖µ∗‖∞

1−‖µ∗‖∞ and µ∗ has the smallest essential
supremum norm (i.e. ‖µ∗‖∞ is smallest) among all Beltrami coefficients in the
Teichmüller class [µ] of µ. The Beltrami coefficient µ∗ is called extremal Beltrami
coefficient.

For |t| < 1/‖µ∗‖∞, t ∈ R, we have that tµ∗ ∈ U(G), namely ‖tµ∗‖∞ < 1. Using
the chain rule and the fact that the Teichmüller distance resembles the hyperbolic
distance in the upper half-plane, it easily follows that tµ∗ is extremal for |t| <
1/‖µ∗‖∞, t ∈ R (see [41]). Moreover, the path t 7→ [tµ∗] for |t| < 1/‖µ∗‖∞, t ∈ R,
is a geodesic for the Teichmüller metric (see [41]). An important question is to
determine which maps in a given Teichmüller class are extremal.

3.2. The Teichmüller theorem and the Reich-Strebel inequality. Let ϕ ∈
A(G). The Beltrami coefficient k |ϕ|ϕ , for −1 < k < 1, is said to be of Teichmüller
type. A quasiconformal map whose Beltrami coefficient is of Teichmüller type is said
to be Teichmüller map. A celebrated result of Teichmüller states that any homotopy
class of a quasiconformal map from one closed Riemann surface onto another closed
Riemann surface contains a unique extremal map which is a Teichmüller map. A
corollary of the Teichmülle theorem is that any two points in the Teichmüller space
of a closed surface are connected by a unique geodesic and that the Teichmüller
space is homeomorphic to a unit ball in the Euclidean space. The same results
hold for Teichmüller space of finite Riemann surfaces. The methods of proof that
Teichmüller used do not easily extend to geometrically infinite Riemann surfaces.
The modern proof of the Teichmüller’s theorem and its extension to geometrically
infinite Riemann surfaces rests on the work of Reich and Strebel [58] (see also [29],
[34]).

Theorem 3.1 (Reich-Strebel inequality). Let M be a hyperbolic surface and let G
be a Fuchsian group such that M = H/G. Let ω ⊂ H be a fundamental polygon for
G. Let µ ∈ L∞(G) be a Beltrami coefficient which is Teichmüller equivalent to the
trivial Beltrami coefficient 0, namely the quasiconformal map fµ : H → H whose
Beltrami coefficient is µ is equal to a Möbius map on R̂. Then

(12)
∫∫

ω

|ϕ(z)|dxdy ≤
∫∫

ω

∣∣∣1 + µ(z) ϕ(z)
|ϕ(z)|

∣∣∣
2

1− |µ(z)|2 |ϕ(z)|dxdy,

for ϕ ∈ A(G).

The Reich-Strebel inequality applies to a Beltrami coefficient which is Teichmüller
trivial, namely the normalised quasiconformal map of H with this Beltrami coeffi-
cient is the identity on R̂. Let f and g be two Teichmüller equivalent quasiconformal
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maps. The Beltrami coefficient µ(f ◦g−1) of f ◦g−1 is Teichmüller equivalent to the
trivial Beltrami coefficient 0 and the Reich-Strebel inequality applies to µ(f ◦ g−1).
If the Beltrami coefficient µ(f) is of Teichmüller type, then the Reich-Strebel in-
equality combined with the chain rule gives the uniqueness part of the Teichmüller
theorem.

Theorem 3.2. Let M be a hyperbolic Riemann surface and let G be a Fuchsian
group such that M = H/G. Let f : H → H be a quasiconformal map which
satisfies (1). If f is a Teichmüller map then f is a uniquely extremal map in its
Teichmüller class. Moreover, if M is either closed or finite Riemann surface then
every homotopy class contains a unique Teichmüller map.

3.3. The Finsler metric. The Reich-Strebel inequality is used to describe the
Finsler structure of the Teichmüller metric. If µ ∈ L∞(G) represents a tangent
vector at the basepoint of T (M), then the infinitesimal form for Teichmüller metric
is given by

|µ|T∗(T (M)) = sup
ϕ
|Re

∫∫

ω

µ(z)ϕ(z)dxdy|

where the supremum is over all ϕ in the unit sphere in A(G) and ω is a fundamental
polygon for the action of G.

3.4. The embedding of a general Teichmüller space into the universal
Teichmüller space. The universal Teichmüller space T (H) is the Teichmüller
space of the upper half-plane H. In this case the group G = {id} is trivial. By
the Definition 2.1, T (H) consists of equivalence classes of quasiconformal maps
f : H → H, where two maps f1 and f2 are equivalent if there exists β ∈ PSL2(R)
such that f1|R̂ = β ◦ f2|R̂.

If M = H/G then T (M) consists of all quasiconformal maps of H which satisfy
the invariance property (1) modulo the equivalence relation. Since the equivalence
relation for T (H) restricts to the equivalence relation for T (M), it follows immedi-
ately that T (M) embeds as a proper closed subset of T (H).

Let [f ], [g] ∈ T (M) ⊂ T (H). The Teichmüller distance dT (M)([f ], [g]) between
[f ] and [g] in T (M) is inf log K(g1 ◦ f−1

1 ) where the infimum is taken with respect
all f1 and g1 such that f1|R̂ = f |R̂ and g1|R̂ = g|R̂, and both f1 and g1 satisfy the
invariance property (1). The Teichmüller distance in T (H) is inf log K(g1 ◦ f−1

1 )
where the infimum is over all quasiconformal maps f1, g1 satisfying f1|R̂ = f |R̂ and
g1|R̂ = g|R̂ with no requirement on the invariance. We immediately obtain that

dT (H)([f ], [g]) ≤ dT (M)([f ], [g])

for all [f ], [g] ∈ T (M).
Recall that the Teichmüller metric is a Finsler metric given as follows. The norm

of any Beltrami differential µ ∈ L∞(G) (representing a tangent vector) is defined
by

‖µ‖T∗(T (M)) = sup
‖ϕ‖L1(ω)=1

|Re

∫∫

ω

µ(z)ϕ(z)dxdy|

where ω is a fundamental polygon for G and ϕ ∈ A(G). For the universal Te-
ichmüller space we take the supremum over all holomorphic functions ϕ which are
integrable on H and of unit norm. Denote by A the space of integrable holomorphic
functions on H.
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There is a mapping Θ : A → A(G) given by the Poincaré theta series

(13) Θ(ϕ) =
∑

γ∈G

(ϕ ◦ γ)(γ′)2

for ϕ ∈ A.

Theorem 3.3. Let G be a Fuchsian group acting on H. The Poincaré theta series
defines a continuous surjective linear operator from A onto A(G) whose norm is at
most one. Moreover, the image of the unit ball in A contains a ball of radius 1/3
in A(G).

For ϕ ∈ A and µ ∈ L∞(G), we have that
∫∫

H
µ(z)ϕ(z)dxdy =

∫∫
ω

µ(z)Θ(ϕ)(z)dxdy.
The above theorem implies the inequality

dT (M)([f ], [g]) ≤ 3dT (H)([f ], [g])

for all [f ], [g] ∈ T (M) ⊂ T (H).
It was a conjecture of Kra [38] that the norm ‖Θ‖ of the Poincaré theta series is

strictly less that 1 if M is a finite Riemann surface. A more general statement was
proved by McMullen [54] (see also [5] and [55]).

Theorem 3.4. Let π : Y → X be a covering of a hyperbolic surface X and let
Θ : A(Y ) → A(X) be the Poincaré theta series. Then either:

(1) The covering is amenable, and the image under Θ of the unit ball in A(Y )
is the unit ball in A(X), or

(2) The covering is nonamenable, and the closure of the image of the unit ball
in A(Y ) is contained in the interior of the unit ball of A(X)

If X is a finite Riemann surface then either:
(1) The covering is amenable, ‖Θ‖ = 1 and the inclusion T (X) ⊂ T (Y ) is

isometry for the Teichmüller metrics, or
(2) The covering is nonamenable, ‖Θ‖ < 1 and the inclusion T (X) ⊂ T (Y ) is

a contraction.

Remark. It follows that when X is a finite Riemann surface and Y = H the inclusion
T (X) ∈ T (H) is a contraction. More precisely, dT (H)([f ], [g]) < dT (X)([f ], [g]) if
and only if f ◦ g−1|R̂ is not in PSL2(R).

3.5. Conditions for extremality. If M is a geometrically infinite Riemann sur-
face then not every homotopy class contains a Teichmüller map. The first example
of a homotopy class of a quasiconformal map of H which does not contain a Te-
ichmüller map is given by Strebel [67] (see also [41]). However, Strebel [68] gave
a sufficient condition for a homotopy class to contain a Teichmüller map. Let C
be a compact subset M and let C̃ be the lift of C to H. Let f : H → H be a
quasiconformal map. Denote by Kz(f) the quasiconformal dilatation of f at point
z ∈ H. (Note that Kz(f) is defined for almost all z ∈ H for a fixed f .) Define
HC̃(f) = ‖Kz(f)|H\C̃‖∞.

Theorem 3.5 (The Frame Mapping Condition). Let M be a geometrically infinite
Riemann surface and let [f ] ∈ T (M). Let K0 be the dilatation of an extremal map
f0 ∈ [f ]. If there exists a compact set C ⊂ M and f1 ∈ [f ] such that HC̃(f1) < K0

then the homotopy class [f ] of f contains a Teichmüller map, where C̃ is the lift of
C to H.
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Remark. The mapping f1 ∈ [f ] such that HC̃(f1) < K0 is called the frame mapping.

A point [f ] in the Teichmüller space T (M) is called a Strebel point if it contains
a frame mapping. The set of Strebel points in T (M) is dense and open (see [39],
[19]).

Observe that each µ ∈ L∞(G) acts as a bounded linear functional on A(G). In
fact, the dual A∗(G) of A(G) is identified with L∞(G)/N(G) [3], [29]. Recall that
[µ]tan is the coset µ + N(G) and call it the tangent class of µ.

A Beltrami differential µ0 ∈ [µ]tan is said to be infinitesimally extremal if
‖µ0‖∞ = sup | ∫∫

ω
µ(z)ϕ(z)dxdy| where the supremum is over all ϕ in the unit

sphere in A(G). Another important consequence of the Reich-Strebel inequality is
a necessary and sufficient condition for the Teichmüller extremality.

Theorem 3.6. Let M be a hyperbolic surface and let G be a Fuchsian group such
that M = H/G. Let µ ∈ U(G). Then µ is extremal in its Teichmüller class [µ] if
and only if it is infinitesimally extremal in [µ]tan.

The Reich-Strebel inequality is also used in proving the principle of Teichmüller
contraction (see Gardiner [31] and Earle [13]). Let µ ∈ U(G). Assume that
µ0 ∈ [µ] is a Teichmüller extremal Beltrami coefficient and that µ1 ∈ [µ]tan

is an infinitesimally extremal Beltrami differential. The Teichmüller efficiency
of µ is the difference ‖µ‖∞ − ‖µ0‖∞ and the infinitesimal efficiency is ‖µ‖∞ −
sup‖ϕ‖L1(ω)=1 Re

∫∫
ω

µ(z)ϕ(z)dxdy, where ω is a fundamental polygon in H for G.
The Teichmüller contraction principle states that the Teichmüller efficiency is bi-
Lipschitz equivalent to the infinitesimal efficiency on any ball in U(G) with radius
r < 1, where the bi-Lipschitz constant depends on r.

3.6. The unique extremality. We have the following definition.

Definition 3.1. A Beltrami coefficient µ ∈ U(G) is uniquely extremal if it is the
only element in the Teichmüller class [µ] which satisfies ‖µ‖∞ = infµ1∈[µ] ‖µ1‖∞. A
Beltrami differential ν ∈ L∞(G) is uniquely extremal in the tangent class if it is the
only differential in the tangent class [ν]tan that satisfies ‖ν‖∞ = infν1∈[ν]tan

‖ν1‖∞.

The Teichmüller theorem states that the Teichmüller map is uniquely extremal.
Strebel [67] gave a first example of an extremal map which is not a Teichmüller
map (the example is not uniquely extremal). Further, Strebel [69] showed that the
horizontal stretching in an infinite strip is uniquely extremal. The Beltrami differ-
ential of this map is of the form k |ϕ|ϕ but the holomorphic differential ϕ(z)dz2 = dz2

is not integrable. According to our definition this implies that k |ϕ|ϕ is not a Te-
ichmüller Beltrami coefficient. We call it a generalised Teichmüller Beltrami co-
efficient. Therefore, Strebel showed that some generalised Teichmüller Beltrami
coefficients are uniquely extremal. The following characterisation of uniquely ex-
tremal maps was proved by Božin-Lakic-Markovic-Mateljević in [10].

Theorem 3.7. A Beltrami coefficient µ ∈ U(G) is uniquely extremal in its Te-
ichmüller class [µ] if and only if it is uniquely extremal in its tangent class [µ]tan.

The following characterisation of uniquely extremal generalised Teichmüller co-
efficients was also obtained in [10].
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Theorem 3.8. Let ϕ ∈ BH(G) and ϕ 6= 0. Let f be a quasiconformal map of H
onto itself whose Beltrami coefficient is k |ϕ|ϕ , for 0 < k < 1. Then f is uniquely
extremal in its Teichmüller class if and only if there exists ϕn ∈ A(G) which satisfies

(1) ϕn(z) converges to ϕ(z) uniformly on compact subsets of H,
(2) k‖ϕn‖L1(ω) −Re

∫∫
ω

ϕn(z)µ(z)dxdy → 0 as n →∞.

Another important fact proved in [10] is that not every uniquely extremal map
is a generalised Teichmüller map and moreover has not constant absolute value
Beltrami coefficient.

Theorem 3.9. Let M be a hyperbolic surface that is a subset of another Riemann
surface W such that W \M has a cluster point. Let G be a Fuchsian group such
that M = H/G and let ϕ ∈ A(G) with ‖ϕ‖L1(ω) = 1. Then for every ε > 0 and for
every Beltrami coefficient µ ∈ U(G) there exists ν ∈ U(G) such that∫∫

{z∈ω:ν(z)6=µ(z)}
|ϕ(z)|dxdy < ε

and ν is uniquely extremal in its Teichmüller class.

Remark. This theorem shows that there are many uniquely extremal maps which do
not have Beltrami coefficient whose absolute value is almost everywhere constant.

More results about uniquely extremal maps were proved in [76], [74], [75].

3.7. The uniqueness of geodesics in the general Teichmüller space. Given
[µ] ∈ T (M), with [µ] 6= [0], we noted that there exists at least one geodesic con-
necting the basepoint [0] with [µ]. This geodesic is given by t 7→ [tµ1], 0 ≤ t ≤ 1,
where µ1 ∈ [µ] is an extremal Beltrami coefficient in the Teichmüller class [µ]. We
also note that t 7→ [tµ1], for −1/‖µ1‖∞ < t < 1/‖µ1‖∞, is a maximal geodesic
extension of the above geodesic connecting [0] with [µ].

The following theorem is a complete characterisation of points [µ] ∈ T (M) which
are connected to the basepoint [0] ∈ T (M) by a unique geodesic. This characteri-
sation is a consequence of the equivariant extensions of holomorphic motions and
it was obtained by Earle-Kra-Krushkal in [18].

Theorem 3.10. Let M be a hyperbolic Riemann surface and let G be a Fuchsian
group such that M = H/G. Let µ ∈ U(G) be an extremal Beltrami coefficient on
M such that [0] 6= [µ]. Then the following are equivalent:

(1) The Beltrami coefficient is uniquely extremal and |µ| = ‖µ‖∞ almost ev-
erywhere,

(2) There is exactly one geodesic segment connecting [id] and [µ],
(3) There is exactly one holomorphic isometry Ψ : D → T (M) such that Ψ(0) =

[0] and Ψ(‖µ‖∞) = [µ],
(4) There is exactly one holomorphic isometry Ψ̂ : D → U(G) such that Ψ̂(0) =

0 and Ψ̂(‖µ‖∞) = µ.

Remark. Recall that Bozin-Lakic-Markovic-Mateljevic (see [10]) constructed ex-
amples of uniquely extremal map whose Beltrami coefficients have non-constant
absolute values.

The implication (1)=⇒(2) is proved by Z. Li [42]. To illustrate the main idea in
the proof of this part of the theorem, we consider the Banach space l∞ of all bounded



14 VLADIMIR MARKOVIC AND DRAGOMIR ŠARIĆ

sequences of complex numbers with the supremum norm ‖s‖∞ = supi∈N |s(i)|. A
length of a differentiable path p : [a, b] → l∞ is given by l[a,b](p) =

∫ b

a
‖p′(t)‖∞dt.

A geodesic in l∞ is a distance minimising path p : [a, b] → l∞, namely a path
p : [a, b] → l∞ such that l[t,t′](p) = ‖p(t) − p(t′)‖∞ for all t, t′ ∈ [a, b]. Let 1 ∈
l∞ be a constant sequence whose each entry is 1. We show that there exists a
unique geodesic in l∞ which connects the basepoint 0 ∈ l∞ with 1. The geodesic
p : [0, 1] → l∞ is given by p(t) = t · 1. Let q : [0, 1] → l∞ be another geodesic
such that q(0) = 0 and q(1) = 1. Let t0 ∈ (0, 1) such that q(t0) /∈ p([0, 1]). After
reparametrisation if necessary, we have that l[0,t](q) = t and l[t,1](q) = 1 − t for
each t ∈ [0, 1]. Since q(t0) /∈ p([0, 1]) and ‖q(t0)‖∞ = t0, it follows that there exists
i0 ∈ N such that q(t0)(i0) < t0. Then |q(1)(i0) − q(t0)(i0)| > 1 − t0 which gives
‖q(1) − q(t0)‖∞ > 1 − t0. This is a contradiction with the parametrisation of the
geodesic q. Thus there is exactly one geodesic connecting 0 and 1.

The above theorem characterises points in T (M) which are connected to the
basepoint by a unique geodesic. A related question was to characterise points in
T (M) which lie on a unique maximal geodesic through the basepoint. Recall that
a point [µ] ∈ T (M) is said to be a Strebel point if it satisfies the conditions of the
Strebel’s Frame Mapping Condition (see Theorem 3.5). In particular, by Theorem
3.5 a Strebel point has a Teichmüller Beltrami coefficient representative. However,
not every every point [µ] which has Teichmüller representative is a Strebel point.
The following theorem of Earle and Li completely characterises points which are
connected to the basepoint by a unique maximal geodesic and it describes the
situation when there is more than one maximal geodesic connecting the point to
the basepoint.

Theorem 3.11. Let [µ] ∈ T (M) be a point different from the basepoint [0]. Then
[µ] is a Strebel point if and only if there is a unique maximal geodesic through [µ]
and the basepoint [0] ∈ T (M). Moreover, if [µ] is not a Strebel point then there
exists a holomorphic isometry Ψ of the unit ball D∞ in l∞ into T (M) such that
Ψ(k0([µ]) · 1) = [µ] and Ψ(0) = [0]. (The isometry is with respect to the Kobayashi
metrics on D∞ and T (M). k0([µ]) = infµ1∈[µ] ‖µ1‖∞ is the minimal dilatation of
the Teichmüller class [µ].)

Remark. The geometry of D∞ determines the geometry of its image Ψ(D∞) ⊂
T (M). In particular, there are infinitely many geodesics through [µ] and [0] (in
this case). If µ is uniquely extremal and |µ| is constant, then Earle-Kra-Krushkal
theorem (Theorem 2.6) guarantees that there is only one geodesic between [µ]
and [0]. Earle-Li theorem says that there are infinitely many maximal extensions.
Another corollary of Earle-Li theorem is that there exists a simple closed geodesic
through [µ] and [0] whose length is four times the distance from [µ] to [0].

3.8. The bi-Lipschitz structure of Teichmüller spaces. If M is a finite type
Riemann surface then the Teichmüller space T (M) is locally bi-Lipschitz equivalent
(as a metric space with respect to the Teichmüller metric) to the Euclidean space of
the corresponding dimension. This means that every metric ball in T (M) of finite
radius can be mapped by a bi-Lipschitz homeomorphism onto a Euclidean ball.
This follows from the Bers embedding theorem 2.1. Assume that M is an infinite
type surface. The following theorem was proved by Fletcher [28] and it shows that
all infinite dimensional Teichmüller spaces are locally bi-Lipschitz equivalent.
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Theorem 3.12. Let M be an infinite type Riemann surface and let l∞ denote the
Banach space of all bounded sequences. Then T (M) is locally bi-Lipschitz equivalent
to l∞.

This of course does not mean that every two infinite dimensional Teichmüller
spaces are globally bi-Lipschitz equivalent. We have the following conjecture.

Conjecture 3.1. Let M and N be two infinite type Riemann surafaces. Suppose
that there exists a bi-Lipschitz map f : T (M) → T (N). Then there exists a qua-
siconformal map between M and N and T (M) and T (N) are isometric to each
other.

4. Biholomorphic maps between Teichmüller spaces

The Bers embedding (see Theorem 2.1) introduces a natural complex structure
on the Teichmüller space T (M) of a hyperbolic Riemann surface M . An important
problem was to classify all biholomorphic maps between any two Teichmüller spaces
T (M) and T (N), where N is also a hyperbolic Riemann surface. A particular case
of this problem was to understand all biholomorphic self-maps of a Teichmüller
space T (M).

The mapping class group MC(M) of a Riemann surface M is the group of all
quasiconformal maps g : M → M up to homotopy. The mapping class group
MC(M) acts on T (M) by [f ] 7→ [f ◦ g−1] for [g] ∈ MC(M) and [f ] ∈ T (M). It
is clear that any [g] ∈ MC(G) induces a biholomorphic map of T (M) onto itself.
Such biholomorphic map is said to be geometric. More generally, a biholomorphic
map from T (M) onto T (N) which is induced by a quasiconformal map from N
onto M is said to be geometric.

A finite Riemann surface of genus g with n punctures is said to be exceptional
if 2g + n ≤ 4, otherwise it is said to be non-exceptional. Royden [59] showed
that for any non exceptional closed surface S each biholomorphic map of T (S)
is geometric. Earle and Kra [16], [17] showed that each biholomorphic map of
the Teichmüller space of a non exceptional finite Riemann surface is geometric
and that a biholomorphic from the Teichmüller space of a finite Riemann surface
onto an open subset of the Teichmüller space of another finite Riemann surface
is also necessarily geometric. (In particular, the two finite Riemann surfaces are
quasiconformal.)

We give an outline of Royden’s proof that a biholomorphic map Ψ of the Te-
ichmüller space T (S) of a closed Riemann surface S is geometric. The map Ψ :
T (S) → T (S) is an isometry for the Kobayashi metric because it is biholomor-
phic. Since the Kobayashi metric equals the Teichmüller metric on T (S), it fol-
lows that Ψ is also an isometry for the Teichmüller metric. The derivative map
Ψ′ : T[id](T (S)) → TΨ([id])(T (S)) of the biholomorphic map Ψ gives an isome-
try between tangent spaces at the basepoint [id] ∈ T (S) and at the image point
Ψ([id]) ∈ T (S). The tangent space T[id](T (S)) at the basepoint [id] ∈ T (S) is iso-
metric to the dual of the space of all integrable holomorphic quadratic differentials
on the Riemann surface S. Since the tangent space is finite-dimensional, it fol-
lows that an isometry between two tangent spaces gives an isometry between their
pre-duals. Namely, there is an induced isometry between the space of holomor-
phic quadratic differentials on the Riemann surface S and the space of holomorphic
quadratic differentials on the Riemann surface Ψ([id])(S).
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Let G be a Fuchsian group such that H/G is isomorphic to S. Let Gf = fGf−1

be the conjugate Fuchsian group which uniformises the Riemann surface Ψ([f ])(S).
We concluded above that there exists an induced linear isometry L : A(G) →
A(Gf ).

Definition 4.1. Let G and G1 be two Fuchsian groups acting on H. An isometry
L : A(G) → A(G1) is said to be geometric if it is given by

L(ϕ) = θ(ϕ ◦ α)(α′)2

for some θ ∈ C, |θ| = 1 and for all ϕ ∈ A(G), where α ∈ PSL2(R) induces a
conformal map α : H/G1 → H/G.

The key ingredient in Royden’s proof is that a linear isometry between H/G and
H/Gf is necessarily geometric whenever H/G is a non exceptional closed Riemann
surface. This implies that there is a conformal map between H/G and H/Gf

which in turn implies that the basepoint [id] ∈ T (S) is mapped by an element
ρ[f ] ∈ MC(S) onto [f ] ∈ T (S). The element ρ[f ] ∈ MC(S) such that ρ[f ]([id]) =
[f ] might depend on [f ]. However, since MC(S) acts properly discontinuously on
T (S) it follows that ρ[f ] = ρ does not depend on [f ] and that Ψ = ρ.

Earle and Kra [16] extended Royden’s argument to non exceptional finite Rie-
mann surfaces. Earle and Gardiner [14] extended all steps in the Royden’s argument
to arbitrary non exceptional Riemann surfaces except the fact that an arbitrary lin-
ear isometry of the spaces of integrable holomorphic quadratic differentials is neces-
sarily geometric. They [14] also extended Royden’s original argument to show that
if a Riemann surface is open with finitely generated fundamental group then each
isometry of the space of integrable holomorphic quadratic differentials is necessarily
geometric. Lakic [40] extended this argument further to all geometrically infinite
Riemann surfaces which can be holomorphically embedded into closed Riemann
surfaces.

To show that biholomorphic maps of the Teichmüller spaces of all non exceptional
Riemann surfaces are necessarily geometric, it remained to show that an isometry
between the spaces of integrable holomorphic quadratic differentials of two Riemann
surfaces (at least one of which is non exceptional) is necessarily geometric. Markovic
[45] proved that each isometry of the space of integrable holomorphic quadratic
differentials is geometric by using a new method independent of Royden’s argument.
Combining all these results together we have the following theorem.

Theorem 4.1. Let M be a hyperbolic surface of non exceptional type. Then the
space of biholomorphic automorphisms Aut(T (M)) coincides with the mapping class
group MC(M) of M .

Proof. We sketch proof in the case of a finite Riemann surface as given in the work
of Earle and Markovic [20] which applied the techniques from [45] to the finite
surface case.

Let Ŝ, Ŝ1 be two closed Riemann surfaces and let E ⊂ Ŝ and E1 ⊂ Ŝ1 be two
finite (and possibly empty) sets. Then S = Ŝ \ E and S1 = Ŝ1 \ E are two finite
Riemann surfaces. Let L : A(S) → A(S1) be a C-linear isometry between spaces
of integrable holomorphic quadratic differentials on S and S1.

Let ϕ0, . . . , ϕk be a basis of A(S). Let ψi = L(ϕi) for i = 0, . . . , k. Let fi = ϕi/ϕ0

and gi = ψi/ψ0 be functions from S and S1 into Ĉ for i = 1, . . . , k. Note that the
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functions fi and gi can have poles at the zeroes of ϕi and ψi. Let S0 = Ŝ \ {p ∈
Ŝ : ∃fi with pole at p}. Let S0

1 = Ŝ1 \ {p ∈ Ŝ1 : ∃gi with pole at p}. Then the
holomorphic functions F = (f1, . . . , fk) and G = (g1, . . . gk) map S0 and S0

1 into
Ck. Moreover, it follows from the Riemann-Roch theorem that if Ŝ, Ŝ1 are not of
exceptional type then F and G extend to holomorphic embeddings of Ŝ and Ŝ1 into
CPk.

Define measures µ and ν on Ŝ and Ŝ1 by

µ(A) =
∫∫

A

|ϕ0| and ν(B) =
∫∫

B

|ψ0|

for A ⊂ Ŝ and B ⊂ Ŝ1. Since L is an isometry, we get that
∫∫

S

∣∣∣1 +
k∑

i=1

λifi

∣∣∣dµ =
∫∫

S1

∣∣∣1 +
k∑

i=1

λigi

∣∣∣dν

for all (λ1, . . . , λk) ∈ Ck. The above implies that
∫∫

S0

∣∣∣1 +
k∑

i=1

λifi

∣∣∣dµ =
∫∫

S0
1

∣∣∣1 +
k∑

i=1

λigi

∣∣∣dν

because Ŝ \ S0 and Ŝ1 \ S0
1 are both finite sets.

Rudin [60] showed that the above condition implies

µ(F−1(Q)) = ν(G−1(Q))

for all Borel subsets Q ⊂ Ck. Let Q = F (S0) in the above equation. Then we
obtain ∫∫

S0
|ϕ0| = µ(S0) = ν(G−1(F (S0))) =

∫∫

G−1(F (S0))

|ψ0| ≤
∫∫

S0
1

|ψ0|

because G−1(F (S0)) ⊂ S0
1 . Since L is an isometry, we conclude that the above

inequality is equality. Therefore G−1(F (S0)) is a subset of S0
1 of full measure. It

is not hard to see that G−1(F (S0)) is closed in Ck. Thus F (S0) = G(S0
1). The

functions F and G extend to embeddings Φ : Ŝ → CPk and Ψ : Ŝ1 → CPk such
that Φ(Ŝ) = Ψ(Ŝ1).

Define a holomorphic map h : Ŝ1 → Ŝ by h = Φ−1 ◦ Ψ. The restriction of h to
S0

1 satisfies F ◦ h = G and h(S0
1) = S0. Then

L(ϕi)
L(ϕ0)

=
ψi

ψ0
= gi = fi ◦ h =

h∗(ϕi)
h∗(ϕ0)

.

For every measurable subset K of Ŝ1 we have∫∫

K

|L(ϕ0)| =
∫∫

K

|ψ0| = ν(K) = µ(h(K)) =
∫∫

K

|h∗(ϕ0)|

which implies that L(ϕ0) = θh∗(ϕ0) for some |θ| = 1. From L(ϕi)
L(ϕ0)

= h∗(ϕi)
h∗(ϕ0)

and the
above, we get

L(ϕi) = θh∗(ϕi)
for all i.

To show that h(S1) = S, it is enough to show that punctures are mapped
onto punctures. By the separation properties of integrable holomorphic quadratic
differentials, for each puncture in Ŝ1 there is an integrable holomorphic quadratic
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differential on S1 with a simple pole at the puncture. Then S1 consists of all
points in Ŝ1 at which every differential L(ϕ) for ϕ ∈ A(S) has finite value. On the
other hand, h−1(S) consists of all points in Ŝ1 at which every differential h∗(ϕ) for
ϕ ∈ A(S) has finite value. The equation L(ϕi) = θh∗(ϕi) implies that these two
sets coincide. Thus h−1(S) = S1 and this finishes the proof. ¤

Remark. The proof in [45] in the case of a general Riemann surface requires ad-
ditional arguments then the above proof for finite Riemann surfaces because in
general there is no holomorphic embedding of a geometrically infinite surface into
CPk, for any finite k. Thus Rudin’s theorem cannot be immediately applied to
construct the corresponding holomorphic map.

5. Earthquakes and Thurston boundary for general Teichmüller
spaces

5.1. Earthquakes. Earthquakes, introduced by Thurston [71], are maps of the
upper half-plane H onto itself. Below we define the left earthquakes (the right
earthquakes can be defined analogously). All properties of left earthquakes hold
for right earthquakes as well.

A geodesic lamination λ on H is a closed subse of H which is a disjoint union
of geodesics in H. We also say that this closed set is foliated by pairwise disjoint
geodesics of H. A stratum of λ is either a geodesic from the given foliation of λ or a
connected component of H\λ. Note that a connected component of H\λ is an open
hyperbolic polygon whose boundary sides are geodesics in λ. A complementary
polygon can have infinitely many boundary sides. From now on, a geodesic from
the foliation of λ will be simply called a geodesic in λ.

An (left) earthquake map E : H → H is a bijective map defined as follows (see
[71]). Let λ be a geodesic lamination on H. The map E when restricted to a
stratum g of λ is in PSL2(R). Moreover, for any two strata g, g1 of λ we require
that E|g ◦ (E|g1)

−1 is a hyperbolic translation whose axis weakly separates g and
g1, and which (weakly) translates stratum g to the left as seen from g1. In other
words, the relative displacement of E(g) with respect to E(g1) is to the left. The
geodesic lamination λ is called the support of E.

It is clear that E(λ) is a geodesic lamination on H. λ is called the initial and
E(λ) is called the terminal lamination of the earthquake map E. The fact that
all relative displacements between strata are to the left gives us a well defined
transverse measure to the geodesic lamination λ as follows. A transverse measure on
λ is a positive Radon measure on each finite hyperbolic arc transverse to geodesics
in λ which is invariant under homotopies preserving all geodesics in λ.

Let I be a closed hyperbolic arc transverse to geodesics in λ. Divide arc I into n
consecutive subarcs of equal length by points {x0, x1, . . . , xn} such that x0 and xn

are the endpoints of I. Let gi be the stratum of λ which contains point xi and let
ai be the translation length of E|gi ◦ (E|gi−1)

−1. Then
∑n

i=1 ai is an approximation
of the transverse measure µ on I [71], namely

µ(I) = lim
n→∞

n∑

i=1

ai.

The quantity µ(I) is independent of the choice of the division points xi as long
as the distance between any two division points goes to 0 as n → ∞ and this
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gives a homotopy invariant positive Radon measure on I whose support is I ∩ λ
(see Thurston [71]). A homotopy invariant transverse measure µ to a geodesic
lamination λ arising from an earthquake map is called an earthquake measure.

Let γ ∈ PSL2(R). If E is an earthquake map whose support is a geodesic
lamination λ then γ ◦ E is also an earthquake map whose support is also λ. The
earthquake measure for E equals the earthquake measure for γ ◦ E. Conversely, if
two earthquake maps E and E1 have the same earthquake measure then they differ
by a post-composition with some γ ∈ PSL2(R) (see [71]).

An earthquake measure is approximated by the sum of the translation lengths
of the relative displacements between adjacent strata. This process can be reversed
to obtain an earthquake map starting from an earthquake measure. Namely, given
an earthquake measure µ we fix the map E to be the identity on one stratum
g0 (the base stratum). For any other stratum g of λ, we connect g0 to g by a
closed hyperbolic arc I. Choose finitely many points {x0, x1, . . . , xn} on I such
that the distance between any two consecutive points goes to 0 as n →∞ (and, for
simplicity, that µ(xi) = 0 for i = 1, . . . , n− 1). For each xi, we choose a hyperbolic
geodesic gi which contains xi such that it is either a stratum of λ or it is contained
in a stratum of λ. We orient gi such that xi−1 is to the left and xi+1 is to the right
of gi. We approximate E|g with the composition T

µ([x0,x1])
g1 ◦ · · · ◦ T

µ([xn−1,xn])
gn of

hyperbolic translations. (T a
g ∈ PSL2(R) is a hyperbolic element with translation

length a > 0 and axis g. The repelling fixed point of T a
g is the initial point of

g and the attracting fixed point is the terminal endpoint of g.) The composition
T

µ([x0,x1])
g1 ◦ · · · ◦ T

µ([xn−1,xn])
gn converges to a well defined element of PSL2(R) as

n →∞ independently of the choice of points {x0, x1, . . . , xn} on I. Then E : H →
H is an earthquake whose measure equals µ by the construction (see [71]).

It is important to note that not every transverse measure to a geodesic lamination
gives an earthquake map in the above sense. We give an example of such transverse
measure which does not give an earthquake map. Let λ consists of geodesics gi,
i ∈ Z \ N, with one endpoint at ∞ and the other endpoint at i. We define a
transverse measure µ on λ to give weight log 2 to each transverse intersection with
any gi. We fix E to be the identity on the stratum of λ which is the hyperbolic half-
plane bounded by g0 and having the positive real axis on its boundary at infinity.
Then E|gi−1 = T log 2

gi
◦· · ·◦T log 2

g0
, where gi are oriented from ∞ to i. This gives that

(E|gi−1)(i − 1) = −(1/2 + 1/22 + · · · + 1/2|i|) > −1 for all i. This implies that E
is not onto because E(H) does not contain hyperbolic half-plane whose boundary
is the geodesic with endpoints ∞ and −1, and which contains (−∞,−1) ⊂ R on
its boundary at infinity. Thus E is not an earthquake map (see [72]). Moreover, it
is possible to find an earthquake measure µ which comes from an earthquake map
such that the transverse measure 1

2µ does not give an earthquake map.

By the definition, earthquake maps displace strata relatively to the left. The
freedom comes from the choice of the support geodesic lamination λ and of the
amount of the displacement, i.e. the earthquake measure. An earthquake map of
H onto itself extends to a homeomorphism of the extended real axis R̂ (see [71]).
A fundamental theorem of Thurston [71]] is that the converse is also true.

Theorem 5.1. Each homeomorphism of the extended real line R̂ is the restriction
of an earthquake map.
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If a transverse measure is supported on only finitely many geodesics then there
exists an earthquake with this measure. Earthquakes with finite transverse mea-
sures are called finite earthquakes. Gardiner, Hu and Lakic [33] gave an alternative
proof of Theorem 5.1 using a finite earthquake theorem.

Theorem 5.2. Given n-tuples (x1, . . . , xn) and (y1, . . . , yn) of points on R̂ in the
counterclockwise order, there exists a unique finite earthquake E whose support
consists of geodesics with endpoints in (x1, . . . , xn) such that E(xi) = yi, for i =
1, 2, . . . , n.

The finite earthquake theorem is used in [33] to give an alternative proof (to the
proof of Thurston) of the general earthquake theorem (Theorem 5.1). The proof in
[33] is by an approximation argument where a general homeomorphism h : R̂ → R̂
is approximated by homeomorphisms coming from finite earthquakes such that they
agree with h on a larger and larger finite sets of points in R̂. The finite earthquake
measures converge to the earthquake measure corresponding to h.

Given the earthquake theorem, the question was to find which earthquake mea-
sures give quasisymmetric maps of R̂. Thurston [71] introduced the notion of a
bounded earthquake measure. An earthquake measure µ is said to be bounded
if supI µ(I) < ∞, where the supremum is over all hyperbolic arcs I of length 1
transverse to the support of µ and µ(I) is the total mass of µ on I. Thurston
[71] showed that any bounded transverse measure to a geodesic lamination gives
rise to an earthquake. The following theorem characterising measures which give
quasisymmetric maps is first proved in [61] (and it was already suggested in [71]).

Theorem 5.3. An earthquake E extends to a quasisymmetric map of R̂ if and
only if the earthquake measure µ of E is bounded.

Remark. The equivalence of the two conditions in the above theorem is proved by
the use of a third condition (see [61]). If µ is a bounded earthquake measure, then
tµ, for t > 0, is also a bounded earthquake measure. Then t 7→ Etµ|R̂ is called
an earthquake path for t > 0 real, where Etµ is an earthquake whose measure is
tµ. The third condition states that the earthquake path in the parameter t > 0
extends to a holomorphic motion of R̂ in the complex parameter τ = t + is, for s
small [61]. Gardiner, Hu and Lakic [33] gave another proof of the above theorem
by analysing tangent vectors to earthquake paths. More recently, Epstein, Marden
and Markovic [26] proved the above theorem using a method similar to [61].

Proof. We sketch a rather short proof obtained recently in [62]. Let E be an
earthquake on H whose measure is µ and let h = E|R̂. Let λ be the support of
µ. Assume that h is quasisymmetric map and that µ is not bounded. We obtain
a contradiction as follows. Since µ is not bounded, there exists a sequence In of
hyperbolic arcs with length 1/n such that µ(In) →∞ as n →∞. Give an arbitrary
orientation to each In. Let gn

l and gn
r be the leftmost and the rightmost geodesic

of the support of µ which intersect In. Orient gn
l and gn

r such that their tangent
vectors at the points of intersection with In together with the tangent vectors of In

form a positive basis of the tangent space of H. Let γn ∈ PSL2(R) be such that
γn(gn

l ) is the geodesic g with endpoints 0 and ∞, and that γn(In ∩ gn
l ) = i. Let

gn = γn(gn
r ) be the image of gn

r , and let an and bn be the initial and the terminal
point of gn, respectively. Then an → 0 and bn → ∞ as n → ∞ by the choice
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of γn. Fix a quadruple (0, b,∞, d) such that b > 0, d < 0 and cr(0, b,∞, d) = 2.
Let δn ∈ PSL2(R) be such that En = δn ◦ E ◦ γ−1

n is the identity on the geodesic
with endpoints 0 and ∞. Then En fixes 0, ∞ and d, and En(b) → ∞ as n → ∞.
Thus cr(En(a, b, c, d)) → ∞ as n → ∞. However, this is a contradiction with the
fact that each En|R̂ has a quasiconformal extension with the same quasiconformal
constant as does E|R̂.

We consider the converse. Namely, assume that µ is bounded and that h = E|R̂
is not quasisymmetric. Then there exists a sequence of quadruples (an, bn, cn, dn) on
R̂ such that cr(an, bn, cn, dn) = 2 and cr(h(an, bn, cn, dn)) →∞ as n →∞. There
exists γn ∈ PSL2(R) such that γn(an, bn, cn, dn) = (a, b, c, d) for a fixed quadruple
(a, b, c, d) whose cross-ratio is 2. Let µn = γn(µ). Since µ is bounded, it follows
that all µn are bounded with the same bound as µ. Then there exists a subsequence
µnk

of µn which converges in the weak* sense on each hyperbolic arc in H. This
implies that a subsequence of properly normalised earthquakes Enk

whose measures
are µnk

weakly converge to an earthquake E∗ of H whose measure µ∗ is the weak*
limit of µnk

(see [62]). On the other hand, cr(En(a, b, c, d)) →∞ as n →∞ by our
assumption. However, cr(Enk

(a, b, c, d)) → cr(E∗(a, b, c, d)) as nk → ∞ because
Enk

→ E∗. This is a contradiction because E∗ is a homeomorphism. ¤

We describe in more details the additional condition which was used in the proof
of Theorem 5.3 in [61]. Let H3 = {(z, t) : z ∈ C, t > 0} be the upper half-space
equipped with the hyperbolic metric whose density is ρ(z, t) = 1

t . The upper half-
plane H isometrically embeds into H3 by specifying H = {(z, t) : z ∈ C, Im(z) =
0, t > 0}. Let µ1 and µ2 be two transverse measures on λ. Then µ = µ1 + iµ2 is a
complex valued transverse measure with the support λ. Thurston [72], [23] defined
a bending map Eµ : H → H3 as follows. Fix one stratum g of λ and define Eµ

to be the identity on this stratum. Given any other stratum g′, consider a closed
hyperbolic arc I from g to g′. Let {x0, x1, . . . , xn} be points of division of I such
that the maximum of the distance between any two consecutive points xi−1 and xi

goes to 0 as n →∞ and such that µ(xi) = 0 for i = 1, . . . , n− 1. For each interval
(xi−1, xi), let gi be a geodesic intersecting (xi−1, xi) which is either a stratum of λ
or which belongs to a stratum of λ. Orient gi such that I crosses it from the left to
the right. Denote by T

µ(xi−1,xi)
gi a Möbius map in PSL2(C) which is a loxodromic

element whose oriented axis is gi and the translation length is µ(xi−1, xi). Then
the composition T

µ(x0,x1)
g0 ◦ · · · ◦T

µ(xn−1,xn)
gn approximates Eµ|g′ (see [23]). Namely,

Eµ|g′ = lim
n→∞

Tµ(x0,x1)
g0

◦ · · · ◦ Tµ(xn−1,xn)
gn

.

The bending map is a generalisation of the earthquake map. The image of H is
a bent plane in H3. The bending is along the transported support of µ by the
earthquake Eµ1 and the bending angle is given by the measure µ2 (see [23], [72]).
Observe that not every measure µ2 will produce an embedded bent plane in H3

(not even every bounded measure). However such bent planes are immersed in H3.

Let µ be a bounded earthquake measure. Let τ ∈ C be a complex parameter.
Then τµ is a complex transverse measure and for τ ∈ R, τ > 0, we get a bounded
earthquake measure. The following theorem is proved in [61].
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Theorem 5.4. Let h be a homeomorphism of R̂ and let E be an earthquake of H
such that E|R̂ = h. Let µ be the earthquake measure of E. Then the following are
equivalent:

(1) h is a quasisymmetric map,
(2) µ is a bounded earthquake measure,
(3) there is neighbourhood V ⊂ C of the real line R such that the earthquake

path t 7→ Etµ|R̂, for t > 0, extends to a holomorphic motion τ 7→ Eτµ|R̂
of the extended real axis R̂ for the parameter τ ∈ V .

Moreover, the parameter τ neighbourhood of the real axis is V = {τ ∈ C : |Im(τ)| <
|t| · ‖µ‖e|t|·‖µ‖}, where ‖µ‖ = supI µ(I) and I is a hyperbolic arc of length 1.

Remark. Epstein, Marden and Markovic [25] improved the constant to |t|·‖µ‖e|t|·‖µ‖
from [61] where the original constant was |t| · ‖µ‖e8|t|·‖µ‖. They [26] also showed
that this is the best possible constant in general.

The following is an immediate consequence of the above theorem and it extends
the result of Kerckhoff [37] for closed surfaces.

Corollary 5.1. Let µ be a bounded earthquake measure. Then the earthquake path
t 7→ Etµ|R̂ is a real analytic map from the positive real axis into the universal
Teichmüller space. If µ is invariant under a Fuchsian group, then the earthquake
path is real analytic in T (H/G).

Theorem 5.4 shows that for any bounded earthquake measure µ, it is always
possible to bend for τ ∈ C, when Im(τ) is small enough. The following theorem of
Epstein, Marden and Markovic [25] (see also [26] and [24]) considers all τ ∈ C for
which the bending map Eτµ is defined.

Theorem 5.5. The path component containing 0 ∈ C of all parameters τ ∈ C for
which the bending map Eτµ is defined is a simply connected domain in C.

Gardiner, Hu and Lakic [33] considered earthquake maps which give different
smoothness classes. An earthquake measure µ is said to be asymptotically trivial if
supI⊂H\Di(n) µ(I) → 0 as n → ∞, where Di(n) is the hyperbolic disk with centre
i and radius n. For example, they [33] showed that an earthquake map restricts
to a symmetric map of R̂ if and only if the earthquake measure is asymptotically
trivial. The proof of Theorem 5.3 can be modified to obtain a short proof of
the above statement (see [62]). Gardiner, Hu and Lakic [33], and Hu [36] also
obtained results about earthquake measures for earthquake maps which give C1+α

smoothness classes of homeomorphisms. Moreover, Gardiner and Hu showed a
version of the Jackson-Zygmund approximation of the Zygmund class of functions
using infinitesimal finite earthquakes (see [32]).

5.2. Thurston boundary for general Teichmüller spaces. The celebrated
Thurston boundary for the Teichmüller space of a finite hyperbolic Riemann sur-
face M is the space of projective measured laminations on M [73], [72], [27]. This
boundary is obtained as follows. Let S be the set of all homotopy classes of ho-
motopically non-trivial and non-peripheral, simple closed curves on M . Given
[f : M → M ′] ∈ T (M), we define a function s[f ] from S to positive real numbers by
assigning to each α ∈ S the length of the geodesic representative of the curve f(α)
on M ′ = f(M). The assignment [f ] 7→ s[f ] is an embedding of the Teichmüller
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space T (M) into the space of all positive, real functions on S equipped with the
weak topology.

A path t · f , for t > 0 and f : S → R+, is said to be an asymptotic ray to
s(T (M)) if there exists a path st ∈ s(T (M)) such that 1

t st → f as t → ∞ in the
weak topology. Thurston showed that an asymptotic ray to the image s(T (M)) of
the Teichmüller space T (M) is a function with special properties as follows. Namely,
if t · f , for t > 0, is an asymptotic ray then there exists a measured lamination µ on
M such that f(α) = i(α, µ) for all α ∈ S. Conversely, each measured lamination
induces a function iµ on S (by using the intersection number α 7→ iµ(α) = i(µ, α))
such that the ray t · iµ, for t > 0, is asymptotic to s(T (M)). Thus the boundary
of T (M) is identified with the space of projective measured laminations PML(M)
on M .

Thurston’s construction is putting together two different types of objects: the
marked hyperbolic metrics on M (obtained by taking pull-backs by the quasiconfor-
mal maps f : M → M ′) and the projective measured laminations on M . Bonahon
[7] unified the discussion by realizing both objects in a single space of geodesic cur-
rents. We describe a generalisation (see [63], [64]) of the Bonahon’s construction to
general Teichmüller spaces and the corresponding Thurston boundary. From now
on we resume our standing assumption that M is an arbitrary hyperbolic Riemann
surface.

An oriented hyperbolic geodesic in H is uniquely determined by its initial and
terminal endpoint on R̂ and any pair of different points on R̂ determines a unique
oriented geodesic. Then the space of geodesics G on H is isomorphic to (R̂× R̂) \
diag. The distance d on G is defined by d(g, g′) = max{|a − a′|, |b − b′|}, where
g = (a, b), g′ = (a′, b′) and |a− a′| is the angle distance between a and a′ measured
from i ∈ H. A distance on G introduced by the angle distance with respect to
another point in H is bi-Lipschitz equivalent to d. A quasisymmetric map of R̂ is
Hölder continuous in the angle metric.

We define a unique positive Radon measure on the space of geodesics G of H
which is invariant under the action of PSL2(R) as follows. Recall that (R̂×R̂)\diag
is a model for G. The Liouville measure is by the definition

L(A) =
∫∫

A

dxdy

(x− y)2
,

where A ⊂ (R̂ × R̂) \ diag is a Borel set. If A is a box of geodesic [a, b] × [c, d]
with [a, b]∩ [c, d] = ∅, then the Liouville measure of A is given by L([a, b]× [c, d]) =
log cr(a, b, c, d), where cr(a, b, c, d) = (c−a)(d−b)

(d−a)(c−b) .
A positive Radon measure T on G is said to be bounded if supQ T (Q) < ∞

where Q = [a, b]× [c, d] is a box of geodesics and L(Q) = log 2. Let Mb(G) be the
space of all bounded measures on G. We define the Liouville map L introduced by
Bonahon in [7]. Recall that the universal Teichmüller space T (H) is identified with
the space of all quasisymmetric maps of R̂ modulo post-composition with elements
of PSL2(R) and that T (M) is identified with the subspace of T (H) consisting of
maps which conjugate G onto another Fuchsian group, where M = H/G. Then the
Liouville map

L : T (H) →Mb(G)
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is defined by
L([h])(A) = h∗(L)(A) = L(h(A)),

where A ⊂ G is a Borel set and h : R̂ → R̂ is a quasisymmetric map.
In the case of a closed surface M , Bonahon and Sozen [8] introduced a topological

vector space of Hölder distributions which contains the space of measures on the
geodesics of M and showed that the Liouville map is continuously differentiable in
the sense of Frechét. We describe a proper generalisation of the space of Hölder
distributions that is adopted to a general hyperbolic Riemann surface (see [64]).

The construction and the properties of the objects related to the Liouville map L
of the universal Teichmüller space T (H) that we describe below are invariant under
a Fuchsian group G provided that we restrict L to the subspace of quasisymmetric
maps invariant under G (see [64], [63]). Therefore, our results will hold for general
Teichmüller spaces. The first goal is to introduce a space containing as a subspace
the space of bounded measures Mb(G) and such that the Liouville map L has good
smoothness properties. One candidate would be the dual space to the space of all
differentiable real functions with compact support on G. However, a conceptual
problem is that this space is not invariant under the pull backs by quasisymmetric
maps of R̂ (which corresponds to a change of basis for the Teichmüller space). To
resolve this, note that a quasisymmetric map h is Hölder continuous with the Hölder
constant depending on the quasiconformal constant of the minimal quasiconformal
extension of h. Then the space of all Hölder distributions on Hölder continuous
functions is invariant under the change of base (see [8], [64]).

In [64], a family of Hölder distributions in the parameter 0 < ν ≤ 1 is introduced
and the intersection of the family is the space into which the universal Teichmüller
space is mapped under the Liouville map. Let 0 < ν ≤ 1 be fixed. For a ν-Hölder
continuous function ϕ : G → R with compact support, we define a ν-norm by

‖ϕ‖ν = max{sup
g∈G

|ϕ(g)|, sup
g,g′∈G, g 6=g′

|ϕ(g)− ϕ(g′)|
d(g, g′)ν

}.

The space of ν-test functions test(ν) consists of all ν-Hölder continuous functions
ϕ : G → R with support in a box [a, b]× [c, d] with L([a, b]× [c, d]) = log 2 such that

‖ϕ ◦ γa,b,c,d‖ν ≤ 1,

where γa,b,c,d ∈ PSL2(R) is such that γa,b,c,d : (a0, b0, c0, d0) → (a, b, c, d) and
(a0, b0, c0, d0) is a fixed quadruple in R̂ with L(a0, b0, c0, d0) = log 2.

Let Hν(G) be the space of all ν-Hölder continuous real functions ϕ : G → R with
compact support. The space Hν(G) of ν-Hölder distributions consists of all linear
functionals W : Hν(G) → R such that

‖W‖ν = sup
ϕ∈test(ν)

|W (ϕ)| < ∞.

If 0 < ν < ν′, we show below that Hν′(G) ⊂ Hν(G). Let ϕ ∈ Hν′(G) and let D
be the diameter of the support of ϕ. Then

‖ϕ‖ν ≤ Dν′−ν‖ϕ‖ν′ .

This implies that
test(ν′) ⊂ Dν−ν′

0 test(ν),
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where D0 is the diameter of [a0, b0]× [c0, d0] which is the support of each ϕ◦γa,b,c,d.
Therefore we have that

Hν(G) ⊂ Hν′(G).
The space H(G) of Hölder distributions is given by

H(G) =
⋂

0<ν≤1

Hν(G).

SinceH(G) ⊂ Hν(G) for all 0 < ν ≤ 1, it follows that ν-norm onHν(G) restricts to a
norm on H(G). The family of ν-norms on H(G) induces the structure of a complete
metrizable topological vector space (see [64] for more details). The space Mb(G)
of bounded measures embeds as a closed subspace in H(G) via the integration of
functions in Hν(G) against the measures.

We extended (see [64]) the target space of the Liouville map

L : T (H) → H(G).

The following theorem is proved in [64] (see [8] for the corresponding result for
compact surfaces).

Theorem 5.6. The Liouville map L : T (H) → H(G) is continuously differentiable
in the sense of Fréchet. Namely, there exists a continuous linear map

T[h0]L : T[h0]T (H) → H(G)

such that if B : A → T (H) is the inverse of the Bers embedding (with A = Φ(T (H)))
and if B(q0) = [h0], then

L ◦ B(q) = L ◦ B(q0) + T[h0]L ◦ Tq0B(q − q0) + o(q − q0)

with limq→q0 o(q − q0)/‖q − q0‖ = 0 in H(G). Moreover, the tangent map T[h0]L
varies continuously in [h0].

Remark. Let t 7→ [ht], for t ∈ (−ε, ε), be a differentiable path in T (H) with tangent
vector v = d

dtht|t=0. Let ϕ ∈ Hν(G). The first step in the proof of the above
theorem was to show that d

dt

∫∫
ϕdh∗t (L)|t=0 exists and it equals to T[h0]L(v). The

Hölder continuity of ϕ is essential to have the above derivative (see [64]). Moreover,
it is possible to find an explicit formula for the derivative which involves a double
integration such that the order of the integration is not possible to change (see [64,
Theorem 2]).

Otal [57] considered further smoothness properties of the Liouville map L :
T (H) → H(G). Namely, he proved

Theorem 5.7. The Liouville map L : T (H) → H(G) is real analytic.

Remark. The proof in [57] uses a holomorphic extension of the Liouville L : T (H) →
Hν(G) for each 0 < ν < 1. Define QF (H) to be the space of equivalence classes
all quasiconformal maps of the Riemann sphere Ĉ, where f1 : Ĉ → Ĉ is equivalent
to f2 : Ĉ → Ĉ if there exists γ ∈ PSL2(C) such that f1|R̂ = γ ◦ f2|R̂. Then
T (H) is a real analytic subspace of QF (H) and the Liouville map extends to a
holomorphic map of a neighbourhood of T (H) in QF (H) into the complexification
Hν

C(G) of Hν(G), for 0 < ν < 1 (see [57]). It is interesting to note that it appears
that the Liouville map does not extend from a neighbourhood of T (H) in QF (H)
into HC(G) =

⋂
0<ν<1Hν

C(G) due to the fact that the size of the neighbourhood of
T (H) depends on ν.
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The Liouville map L : T (H) → H(G) is injective. However, it turns out that the
structure of the topological vector space on H(G) gives additional properties to the
Liouville map (see [63] and see [7] for the case of closed surface).

Theorem 5.8. The Liouville map L : T (H) → H(G) is a homeomorphism onto its
image which is closed and unbounded. Moreover, the image L(T (H)) consists of all
bounded, positive measures T on the space of geodesics G which satisfy

e−T ([a,b]×[c,d]) + e−T ([b,c]×[d,a]) = 1

for all a, b, c, d ∈ R̂ given in the counterclockwise order.

An asymptotic ray to the image L(T (H)) is a path t 7→ t · W , for t > 0 and
W ∈ H(G), such that there exists a path h∗t (L) ∈ L(T (H)) with

1
t
h∗t (L) → W,

as t → ∞ in the topology of H(G). Therefore, it is natural to consider the set of
asymptotic rays as a boundary of the Teichmüller space T (H).

We defined a bounded measured lamination µ on H to be a geodesic lamination
λ (called the support of µ) together with a transverse, homotopy invariant measure.
Since the transverse measure is homotopy invariant, it follows that the transverse
measure to λ induces a bounded measure on H(G) whose support is λ. Conversely,
a bounded measure on H(G) whose support λ is a geodesic lamination induces a
measured geodesic lamination on H. For example, the Liouville measure and the
pull back of the Liouville measure by any homeomorphism h : R̂ → R̂ are measures
of full support and they do not induce measured geodesic laminations. On the other
hand, a measure on G which is supported on finitely many non-intersecting geodesics
induces a finite measured geodesic lamination.

The following result from [63] completely characterises th Thurston boundary of
general Teichmüller spaces.

Theorem 5.9. Any asymptotic ray to L(G) is of the form t 7→ tµ, where µ is a
bounded measured lamination and t > 0. Conversely, the ray tµ, for a bounded
measured lamination µ and t > 0, is asymptotic to the image L(Etµ|R̂) of an
earthquake path t 7→ Etµ|R̂. Thus, the Thurston boundary of a general Teichmüller
space is identified with the space of projective, bounded measured laminations.

Remark. The hyperbolic plane does not have simple closed geodesic. An infi-
nite Riemann surface has simple closed geodesics, but it is not always possible
to parametrise the Teichmüller space using the lengths of the geodesic representa-
tives of simple closed curves, unlike in the finite case. Thus the approach at hand
using the Liouville map seems to be the correct one.

Remark. The most demanding part of the proof of the above theorem is in establish-
ing that the earthquake path has its projective measured geodesic lamination as its
unique endpoint on the Thurston boundary. Namely, that 1

t

∫∫
G ϕd(Etµ|R̂)∗(L) →

µ as t → ∞, for all ϕ ∈ Hν(G). We illustrate this convergence in the case of a
simple earthquake E whose earthquake measure consists of a single atom m > 0
at the geodesic g = (a, c). Let µ denote the measure with support g such that
µ(g) = m. Then 1

t L(Etµ|R̂([a′, b′] × [c′, d′])) converges to m if a ∈ [a′, b′] and
c ∈ (c′, d′], otherwise it converges to 0 as t →∞ (see [63, Appendix, Lemma A.1]).
This fact together with a more detailed information about the above convergence
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implies that 1
t

∫∫
G ϕd(Etµ|R̂)∗(L) → µ(supp(ϕ)) ·ϕ(g) as t →∞. A general case is

proved by a careful analysis of the earthquake measure and the asymptotics of the
pull backs of the Liouville measure (see [63, Section 4, Appendix] for the details).
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[54] C. McMullen, Amenability, Poincaré series and quasiconformal maps, Invent. Math. 97

(1989), no. 1, 95–127.
[55] C. McMullen, Amenable coverings of complex manifolds and holomorphic probability mea-

sures, Invent. Math. 110 (1992), no. 1, 29–37.
[56] S. Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical So-

ciety Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John
Wiley & Sons, Inc., New York, 1988.

[57] J. Otal, About the embedding of Teichmüller space in the space of geodesic Hölder dis-
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